Coefficients: (1 not defined because of singularities)
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Coefficients: (1 not defined because of singularities)相关的知识,希望对你有一定的参考价值。
Coefficients: (1 not defined because of singularities)
目录
Coefficients: (1 not defined because of singularities)
问题:
#模型的特征存在共线性问题,有些特征强相关;
#define data
df <- data.frame(y = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1),
x1 = c(3, 3, 4, 4, 3, 2, 5, 8, 9, 9, 9, 8, 9, 9, 9),
x2 = c(6, 6, 8, 8, 6, 4, 10, 16, 18, 18, 18, 16, 18, 18, 18),
x3 = c(4, 7, 7, 3, 8, 9, 9, 8, 7, 8, 9, 4, 9, 10, 13))
#fit logistic regression model
model <- glm(y~x1+x2+x3, data=df, family=binomial)
#view model summary
summary(model)
解决:
#进行相关性分析
#发现x1和x2几乎完全正相关;
#create correlation matrix
cor(df)
y x1 x2 x3
y 1.0000000 0.9675325 0.9675325 0.3610320
x1 0.9675325 1.0000000 1.0000000 0.3872889
x2 0.9675325 1.0000000 1.0000000 0.3872889
x3 0.3610320 0.3872889 0.3872889 1.0000000
#剔除强相关的变量之后再构建新的模型
#fit logistic regression model
model <- glm(y~x1+x3, data=df, family=binomial)
#view model summary
summary(model)
完整错误:
> #define data
> df <- data.frame(y = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1),
+ x1 = c(3, 3, 4, 4, 3, 2, 5, 8, 9, 9, 9, 8, 9, 9, 9),
+ x2 = c(6, 6, 8, 8, 6, 4, 10, 16, 18, 18, 18, 16, 18, 18, 18),
+ x3 = c(4, 7, 7, 3, 8, 9, 9, 8, 7, 8, 9, 4, 9, 10, 13))
>
> #fit logistic regression model
> model <- glm(y~x1+x2+x3, data=df, family=binomial)
Warning message:
glm.fit:拟合機率算出来是数值零或一
>
> #view model summary
> summary(model)
Call:
glm(formula = y ~ x1 + x2 + x3, family = binomial, data = df)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.372e-05 -2.110e-08 2.110e-08 2.110e-08 1.575e-05
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -75.496 176487.031 0.000 1
x1 14.546 24314.459 0.001 1
x2 NA NA NA NA
x3 -2.258 20119.863 0.000 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2.0728e+01 on 14 degrees of freedom
Residual deviance: 5.1523e-10 on 12 degrees of freedom
AIC: 6
Number of Fisher Scoring iterations: 24
以上是关于Coefficients: (1 not defined because of singularities)的主要内容,如果未能解决你的问题,请参考以下文章
[CF 582D]Number of Binominal Coefficients
构建线性模型(Lasso)并通过系数(coefficients)可视化分析特征重要度
CF582D Number of Binominal Coefficients 库默尔定理 数位dp
CF582D Number of Binominal Coefficients 库默尔定理 数位dp
[Statistics] Comparison of Three Correlation Coefficients: Pearson, Kendall, Spearman
Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients总结