SRCNN 图像超分辨率重建(tf2)
Posted __不想写代码__
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SRCNN 图像超分辨率重建(tf2)相关的知识,希望对你有一定的参考价值。
前言
把由放大缩小的引起的导致分辨率低的图像,转换成为 分辨率高的图像。更加关注的是重构图片过程中,填充新的像素。SRCNN 呢也是将深度学习用于图像重建的鼻祖,网络结构非常简单,于是我决定来复现一下它。
代码链接:https://github.com/jiantenggei/SRCNN-Keras (包含所有资源)
一、SRCNN
SRCNN 的网络结构特别简单,首先将一张低分辨率的图像作为输入,通过两个卷积后,还原成为高质量的图片。网络卷积运算时,保持特征图的大小和重构图片大小一致。且网络中没有线性连接。也就只有三层卷积~。
二、SRCNN 实现
首先在这里简述一下SRCNN 网络的训练和测试流程:
1.先将图片缩小后,再放大,制作不清晰的图片作为训练数据
2.将未处理过的原图片作为训练时的标签。
3.将图片和标签放到网络中训练。
4.测试模型时,将一张不清晰的图片输入到训练好的网络,生成的图片与清晰的原图片计算峰值信噪比。
1.模型的搭建
代码如下:
from keras.models import Sequential, model_from_json
from keras.layers.convolutional import Conv2D
from keras.layers.core import Activation
def built_model(input_shape=(33, 33, 1)):
model = Sequential()
model.add(Conv2D(filters=64, kernel_size=9,
padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, 1, padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(input_shape[2], 5, padding='same'))
return model
if __name__ == '__main__':
model = built_model()
model.summary()
最后一层把图片从多通道特征图,还原成和输入通道一致。
2.生成训练数据
1.先将图片缩小后,再放大,制作不清晰的图片作为训练数据
2.将未处理过的原图片作为训练时的标签。
代码如下:
def load_train(image_size=33, stride=33, scale=3,dirname=r'dataset\\train'):
dir_list = os.listdir(dirname)
images = [cv2.cvtColor(cv2.imread(os.path.join(dirname,img)),cv2.COLOR_BGR2GRAY) for img in dir_list]
#==========================
#这里判断采样步长 是否能被整除
#=========================
images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]
trains = images.copy()
labels = images.copy()
#========================================
#对train image 进行缩小 放大 产生不清晰的图像
#========================================
trains = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in trains]
trains = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in trains]
sub_trains = []
sub_labels = []
#========================================
# 通过采样形成标签 和训练数据,
# 一张 图片 通过采样,可以分成很多个图像块,作为训练数据,丰富样本
#========================================
for train, label in zip(trains, labels):
v, h = train.shape
print(train.shape)
for x in range(0,v-image_size+1,stride):
for y in range(0,h-image_size+1,stride):
sub_train = train[x:x+image_size,y:y+image_size]
sub_label = label[x:x+image_size,y:y+image_size]
sub_train = sub_train.reshape(image_size,image_size,1)
sub_label = sub_label.reshape(image_size,image_size,1)
sub_trains.append(sub_train)
sub_labels.append(sub_label)
#========================================
#编码为numpy array
#========================================
sub_trains = np.array(sub_trains)
sub_labels = np.array(sub_labels)
return sub_trains, sub_labels
def load_test(scale=3,dirname=r'dataset\\test'):
#========================================
# 生成测试数据的方式与训练数据相同
# pre_tests 是用来保存缩小后的图片
#========================================
dir_list = os.listdir(dirname)
images = [cv2.cvtColor(cv2.imread(os.path.join(dirname,img)),cv2.COLOR_BGR2GRAY) for img in dir_list]
images = [img[0:img.shape[0]-np.remainder(img.shape[0],scale),0:img.shape[1]-np.remainder(img.shape[1],scale)] for img in images]
tests = images.copy()
labels = images.copy()
pre_tests = [cv2.resize(img, None, fx=1/scale, fy=1/scale, interpolation=cv2.INTER_CUBIC) for img in tests]
tests = [cv2.resize(img, None, fx=scale/1, fy=scale/1, interpolation=cv2.INTER_CUBIC) for img in pre_tests]
pre_tests = [img.reshape(img.shape[0],img.shape[1],1) for img in pre_tests]
tests = [img.reshape(img.shape[0],img.shape[1],1) for img in tests]
labels = [img.reshape(img.shape[0],img.shape[1],1) for img in labels]
return pre_tests, tests, labels
注意:代码中采样过程(三个for 训练处) 是将一张图片,截取一个个小的区域,这样一张图片就可以产生成多个数据,弥补训练样本不足的问题。
3.训练过程:
代码如下:
from tensorflow.python.keras.saving.model_config import model_from_config
from model import built_model
from utils import load_train
from keras.optimizers import Adam
def train():
# ==========================
# input_shape 输入图片大小
# stride 原图片采样间隔
# batch_size epochs learning_rate
#============================
input_shape = (33, 33, 1)
stride = 14
batch_size = 64
epochs=100
learning_rate=0.001
# 定义模型
srcnn_model = built_model(input_shape=input_shape)
srcnn_model.load_weights(r'model\\srcnn_weight.hdf5')
srcnn_model.summary()
# 加载数据
X_train, Y_train = load_train(image_size=input_shape[0], stride=stride)
print(X_train.shape, Y_train.shape)
optimizer = Adam(lr=learning_rate)
srcnn_model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=['accuracy'])
srcnn_model.fit(X_train,Y_train,epochs=epochs,batch_size=batch_size)
srcnn_model.save(r'model/srcnn.h5')
if __name__ == '__main__':
train()
这里计算损失用均方差,因为输入和输出都是大小一致的图片~ 只是分辨率不同。
4.测试过程
代码如下:
from model import built_model
import os
from utils import load_test,psnr
import cv2
def test():
input_shape = (None, None, 1)
scale = 3
srcnn_model = built_model(input_shape=input_shape)
srcnn_model.load_weights(r'model\\srcnn_weight.hdf5')
X_pre_test, X_test, Y_test = load_test(scale=scale)
predicted_list = []
for img in X_test:
img = img.reshape(1,img.shape[0],img.shape[1],1)
predicted=srcnn_model.predict(img)
predicted_list.append(predicted.reshape(predicted.shape[1],predicted.shape[2],1))
n_img = len(predicted_list)
dirname = './result'
for i in range(n_img):
imgname = 'image{:02}'.format(i)
cv2.imwrite(os.path.join(dirname,imgname+'_original.bmp'), X_pre_test[i])
cv2.imwrite(os.path.join(dirname,imgname+'_input.bmp'), X_test[i])
cv2.imwrite(os.path.join(dirname,imgname+'_answer.bmp'), Y_test[i])
cv2.imwrite(os.path.join(dirname,imgname+'_predicted.bmp'), predicted_list[i])
# 计算峰值信噪比
answer = psnr(Y_test[i],predicted_list[i])
print(imgname+"_psnr:",answer)
if __name__ == '__main__':
test()
X_test 存放的是不清晰的图片,用于和预测结果计算计算峰值信噪比。
总结
各种网络各种功能,喂数据的方式不同,计算损失的方式不同罢了~
以上是关于SRCNN 图像超分辨率重建(tf2)的主要内容,如果未能解决你的问题,请参考以下文章
图像重建基于matlab卷积神经网络的图像超分辨率重建含Matlab源码 1816期