Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解

Posted Tisfy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解相关的知识,希望对你有一定的参考价值。

在这里插入代码片

Codeforces Round #734 (Div. 3)-A. Polycarp and Coins

传送门
Time Limit: 1 second
Memory Limit: 256 megabytes

Problem Description

Polycarp must pay exactly n n n burles at the checkout. He has coins of two nominal values: 1 1 1 burle and 2 2 2 burles. Polycarp likes both kinds of coins equally. So he doesn’t want to pay with more coins of one type than with the other.

Thus, Polycarp wants to minimize the difference between the count of coins of 1 1 1 burle and 2 2 2 burles being used. Help him by determining two non-negative integer values c 1 c_1 c1 and c 2 c_2 c2 which are the number of coins of 1 1 1 burle and 2 2 2 burles, respectively, so that the total value of that number of coins is exactly n n n (i. e. c 1 + 2 ⋅ c 2 = n c_1 + 2 \\cdot c_2 = n c1+2c2=n), and the absolute value of the difference between c 1 c_1 c1 and c 2 c_2 c2 is as little as possible (i. e. you must minimize ∣ c 1 − c 2 ∣ |c_1-c_2| c1c2).

Input

The first line contains one integer t t t ( 1 ≤ t ≤ 1 0 4 1 \\le t \\le 10^4 1t104) — the number of test cases. Then t t t test cases follow.

Each test case consists of one line. This line contains one integer n n n ( 1 ≤ n ≤ 1 0 9 1 \\le n \\le 10^9 1n109) — the number of burles to be paid by Polycarp.

Output

For each test case, output a separate line containing two integers c 1 c_1 c1 and c 2 c_2 c2 ( c 1 , c 2 ≥ 0 c_1, c_2 \\ge 0 c1,c20) separated by a space where c 1 c_1 c1 is the number of coins of 1 1 1 burle and c 2 c_2 c2 is the number of coins of 2 2 2 burles. If there are multiple optimal solutions, print any one.

Sample Input

6
1000
30
1
32
1000000000
5

Sample Onput

334 333
10 10
1 0
10 11
333333334 333333333
1 2

Note

The answer for the first test case is “334 333”. The sum of the nominal values of all coins is 334 ⋅ 1 + 333 ⋅ 2 = 1000 334 \\cdot 1 + 333 \\cdot 2 = 1000 3341+3332=1000, whereas ∣ 334 − 333 ∣ = 1 |334 - 333| = 1 334333=1. One can’t get the better value because if ∣ c 1 − c 2 ∣ = 0 |c_1 - c_2| = 0 c1c2=0, then c 1 = c 2 c_1 = c_2 c1=c2 and c 1 ⋅ 1 + c 1 ⋅ 2 = 1000 c_1 \\cdot 1 + c_1 \\cdot 2 = 1000 c11+c12=1000, but then the value of c 1 c_1 c1 isn’t an integer.

The answer for the second test case is “10 10”. The sum of the nominal values is 10 ⋅ 1 + 10 ⋅ 2 = 30 10 \\cdot 1 + 10 \\cdot 2 = 30 101+102=30 and ∣ 10 − 10 ∣ = 0 |10 - 10| = 0 1010=0, whereas there’s no number having an absolute value less than 0 0 0.


题目大意

n × m n\\times m n×m的方格,和一些 1 × 2 1\\times 2 1×2的多米诺骨牌。
多米诺骨牌可以横着放也可以竖着放,问你能不能正好有 k k k个多米诺骨牌是横着放的。

解题思路

分情况讨论就行了。但是要考虑周全。

  • 首先如果方格是偶数行的:

    • 如果要放奇数个水平的多米诺骨牌:

      那么必定有某处的剩下的行数是奇数(总的偶数-水平的奇数),奇数就不能被2整除,就不能剩下的全部由竖着的来填充。所以直接输出NO

    • 但如果要放偶数个水平的多米诺骨牌:

      先考虑周全一些(不管k),这样如果是奇数行的话必定是偶数列,就能旋转90 。 ^。 变成偶数行了。
      那么我们就先尽量把最左边两列从上到下放满,然后第三四列从上到下…,看看最后一列有没有超出边界即可。
      php4csh/6HXrYPkhRrVnBSceW19VqzwMx9pVxOHw0ajjGXM3yuz0Wmobfhgf4vFo/C2o2fDD/np4rH/AbavOLnUI7SQI6sSRn5QKi/tmD+7J+Q/xqf7QX/PmH/gP/BNlk02rqvV/8C/4B6Z5fwx/57eKh/wG3rr/AIefDH4ffEVPE7Weo+IrVdB0S51uczxwfvI4duUXH8R3DGeK8E/tmD+7J+Q/xr2f9m7xMEi+IumWWl6lquq634YudKsrXT4BLI8srJgbQcnp2BPtS/tKlFOVSnBRW7tt+JMslrtfuq1Vvtzf8AxPI+GX/P14n/79wUfZvhn/AM/niYf9soK84vL7+z7ue1ubeaC5gdopYpFwyOpwVIzwQQRUX9swf3ZPyH+NCzGDV1Rh9z/zL/sap/0EVf8AwJf/ACJ6Z9l+Gn/P94lH/bKGtTT/AAj4A1PRNV1WC/8AEH2TTPK+0Fo4Qw8xiq4HfkV5Na3qXe7YGG3Gdwr0XwV83wz+IK/9M7E/lMa78FiaeIquE6MLcs3s94wk117o8jMsFWwdFThial+emtWtpTjF/Z7N2D7F8NT/AMxLxEP+2EVH2H4bf9BTxCP+3eKuCpCQoJJwBySa4vr8f+fEPuf+Z6X9lz/6Cqn3x/8AkTvv7P8Aht/0Fdf/APAaKj+zvhv/ANBjXv8AwGjrz37VB/z2j/76FH2qD/ntH/30KX1+H/PiH3P/AOSH/ZNT/oJq/fH/AORPQv7M+HH/AEGddH/brH/jXWfFX4S+BvhN491PwrqPiLVri8sPK3yw2ibW8yJJBjn0cV5J4X0iXxf4m0jQtPlgN/ql5DY24kfC+ZI4RckZ4yw7V9l/tOfss638QPjZ4g1208YeCtPhuFtk+zanrQhuEZLeONgybDjlDj2xXj47ijKsskoY32cJPVJ82q6vfo7feVHJ8VOSUK9Vx1u7x0ell8PXX7j5j/sr4cn/AJjutD62af40f2R8Oj/zH9ZH/bmv+NcNqccel6ld2UlzbyyW0rwtJDIGRipIJU9xxwarfaoP+e0f/fQr145hTklJUIWflL/5IX9lVl/zFVfvj/8AIHoX9j/Do/8AMw6uP+3Jf8aBovw7P/Mx6t/4Aj/GuASRZBlGDDplTmpIxukUepAqljoP/mHh/wCTf/JEvLKq/wCYup98P/kD0jWvBXgnw9qc2n6jr2rWt5Dt8yJrFSVyoYdCR0INUv7C+Hn/AEM+p/8Agv8A/r0345nPxU1z6w/+iY64SuzG16OGxVWhGhBqMml8XRtfzHnZbhcRjMFQxM8VUUpwjJ25LXaTdvcO9/sH4e/9DTqQ/wC4f/8AXo/sD4ff9DXqP/guP+NcFRXH9dp/9A8P/J//AJM9H+zK3/QXU/8AKf8A8rPVvCHwu8L+PvEVpoOga/qWo6vd7/ItU0/aX2oztyzAcKrHr2rG/wCEd+H/AP0N98P+4Y3+Ndj+xU2z9pvwWf8Aaux+dnOK8UnXZNIvoxH61o8XSUFL6vDd/wA/l/f8zBYCu6sqf1upZJP/AJd9W/8Ap35Hdf8ACN+AP+hxvR/3DG/xo/4RrwD/ANDndj/uFv8A41wVFZ/XaX/QND/yf/5M3/s2v/0GVP8Ayn/8rO9/4RnwD/0Ol0P+4U/+NH/CL+Av+h2uP/BTJ/jTfFkaf8Kq8ByBVDb79WYDk/vhjNcJXVia1LDzUPq8HeMX9v7UVL+fpexw4PD18XTdRYuorSnH/l0/gnKN/wCF1tfyvY73/hFvAf8A0PE//gok/wAaP+EU8B/9D1MP+4RL/jXBUVy/XaP/AEDQ/wDJ/wD5M7v7NxH/AEG1Pupf/Kjvf+ET8Cf9D5IP+4PL/jR/wiPgU/8AM/OP+4NN/jXY/tN28SWPwhnijSPzPAemhtigbmUygk+p968Rq54qjCXL9Wh99T/5MypYHE1YKf1yovlS/wDlR3v/AAiHgU/81AYfXRZv8ani+HHh3VNP1WXRfGX9p3dhZS3zWx0uSHciDn5mbA6gd+vSvO6734P/ADaj4jj/AOeuhXifov8AhXRhKuHxVeNGWHgubqnO+3nNr8DkzChi8Dhp4mGMqNxs7NUrPVb2pp/c0cFRRRXz59aFFFFABRRRQAUUUUAFFFFABRRRQAV3vxd/4+PCY9PDtmP0auCrvfi9/wAfnhcenh+zH6NXq4f/AHOv/wBu/mzwsX/yMcL6T/JHlOs/8fS/7g/maoVf1n/j6X/cH8zVCvElufY0/gQV9+/8E/PjHpM/jDw54K0DwRpWhzC1cavr5/fX2pSCOR/vkDy0yo+UE9O3Ir4Cr6w/4Jtpn4/Wb+gYfnBP/hXw/GeCoYzIcW66vyU6klq0rqErNpOztur3Seu6R6eB/jpev5M+dPid/wAlJ8Wf9ha7/wDRz1zVdL8Tv+Sk+LP+wtd/+jnrmq+rwn+7U/8ACvyOKW7NTRP+W3/Af616j4E+b4feP1/6drU/lKa8u0T/AJbf8B/rXqPw/wDm8FePV/6cYW/KSvpsq/j/APbs/wD0iR8dxB/u9/79L/05A4Korr/j1m/3D/Kpaiuv+PWb/cP8q8w9mO6OcooornPWPS/2Z5LKD9oP4d3Go3UFjZW2uWlzLc3UixxxrHKr5ZmIAHy9TX0f+0b+yB4y+K/xR8beMvBeueFfF6XNy14NH0nVxJfpEfu7kKhc4xwHOe2eK+PPCXhHWPHfiC10PQLCXVNXu9/kWkGN8hVGdguTydqk46nGBzX1t8E/gt8So/2r/DevQaDq/h/SdIlt7nU9Vv7eS1gjt0iHnRs7gAll3JtGfvc8AkfnfEcpYCvPNaGLhTqU6T9yaTUkm5L7SkuZrlTXVaXeh6FCKnRcWuq/X8j42urWayuZbe4ieC4hcxyRSqVZGBwVIPIIPGKjr0X9ozxJpPjD47+PNa0Jkk0m91i4lt5o/uzKXP7weznLf8CrzqvucJWniMNTrVI8spRTa7Nq7Xy2OGSs2kbOjf8AHq3++f5CtO1G66hHq4H61maN/wAerf75/kK1tPG6/th6yqP1FepT1aPHxDs5M7H43HPxR13/AH4//RSVw9dr8aDn4n69/wBdU/8ARa1xVelmeuPr/wCOX/pTPDyRWyrCr/p3D/0lBRRRXmHtHtP7GbbP2l/BR/6a3I/O1mrx7UV2ahdL6SsP1NeufseNs/aS8EH/AKeJh+dvLXlGuLs1vUF9LiQf+PGtn/CXq/yRyR/3mX+GP5yKVFFFYnWd74k+f4Q+Dj/curxfzcGuCrvdb+f4NeGj/c1C5X8wDXBV6uY/xIP+5D/0hHhZPpRqr/p5V/8ATkmFFFFeUe6e4/tH/vfBvwXn9fCEMef92Rx/WvDq9x+Pv734U/BGf10CaPP+7OR/WvDq2rfH935HJhf4S9X+bCu9+DHzeJ7+P/nppd0n/jn/ANauCrvfgh83j6GP/npa3Cf+Qm/wrvyr/fqK7yX4s83Pf+RXiX2g39yucFRRRXlHuhRRRQAUUUUAFFFFABRRRQAUUUUAFd78X+L/AMND00GzH6NXBV7D450Lw7qlxob6x4n/ALDnTRrRUh/s+S43rtPzZU4HORj2r28FSlWwteEWr+7u1Fbvq2kfM5liIYbHYapNNq0/hjKT2j0im/wPC9Ts5ridWjTcoXGcgdzVT+zLn/nl/wCPD/GvW/8AhEfAo/5n9z9NGm/xo/4RTwIP+Z7mP00eX/GuZ5XWf2of+DKf/wAkehHP6EVZU6n/AIJq/wDyB5J/Zlz/AM8v/Hh/jXun7NviHxZ8IdI8V/Enw/pVnfS+H3s1YX7ZhBnMkIDKrq7cOcbTwQM8Vjf8Iv4CHXxvcH6aTJ/jXsXgfQ/CNp+zP8TEi8TXEun3Wo6ZHPdGwZWjZZGZVC5+bP6VhXyOOKozw+IcJQmmmueDumrWdnt38i48SxpPnpU5386VRaPR7xWttl1dtHsfKGvSX/iHXNR1W4gRJ765kuZFiOFDOxYgZJOMn1qj/Zlz/wA8v/Hh/jXrf/COfD8f8zffH6aY3+NH/CP/AA+H/M16gfppx/xrWOUyhFRjOCS/6eQ/zF/rBTf/AC6qf+Cqn/yJ5npdrLbeb5i7d2Mcg+temfDn5vCvjtf+oYp/JxR/YXw9H/Mz6mfpp/8A9euu8DaX4Mj0jxVHY63qFzC+mt9paS0CmOMMMsozyfavWy3ATp4hNzhtL7cXvF+Z8/nWb062Ff7uoveg9ac0tJxfVeR4pUV1/wAes3+4f5V6F/ZHw6HXX9YP0sl/xpH0j4bspVtb1tlIwQLRB/WvO/s6f/PyH/gcf8z2FnFNP+DU/wDBc/8AI8bor1v/AIRr4XD/AJievH6W6f40f8I78LR/y/8AiA/SGP8AxrL+zJ/8/Yf+Bo7v7epf8+Kv/guR5jomuaj4a1W21PSL+50vUrZt8F5ZzNFLE3TKupBB+levfHT46fEPxJfPompeNNbu9GltYTJYvev5MuUBO9QcNzzzms/+wPhWP+XvxGfpFF/jXqf7R3gf4XeH/H9rbyprlo0mk2UwjsyroQ0QIOXYnJ7jp6VxVcgo16sa1X2UpR2bcW16O2hvHiOlGnKn7Crd2+w+l79fM+UaK9b/ALG+FA/5aeKD9BB/jR/ZPwnH/Q1n6fZ/8a7f7Nf/AD+h/wCBGH9uw/6B6v8A4B/wTz3Rv+PVv98/yFbOkjdqtmPWZB/48K6+G3+FlshWMeLQCc4zbVe0o/DU6pZiBPFJmMyBPMNtt3bhjOO2a6KWX2lH99D/AMC/4B52IzfmjNrD1Nn9n/gmV8Yzu+Juv/8AXYD/AMcWuNr2H4jzeAf+E41f+1IfEL6gJsTG1eERbsD7uecfWub+0fDMf8uniY/WWCuvH4JTxlaXtoK8pdX3fkeZlWZOnl+Hh9XqO0IrSKt8K21OCorvftfw0H/Lh4jP1mho+3fDYf8AMM8Qn63EVcP1CP8Az/h97/yPV/tSX/QNU+5f/JHRfsits/aO8Dn/AKe3H5wyCvMvE67PEurL6Xcw/wDHzXvP7M+oeBT8d/Bq6ZpusRX5vMQyXE6Miko3UCuG8V6j8PIvFGsJLoutPKt5MHIukAJ3nOOK0eDjyKPtob73dun9051mM/bOX1apstLRvu9fi21PLaK73+1/h0P+YBrJ+t4v+FH9tfDsf8y5qx+t8P8ACs/qMP8AoIh/5N/8idH9p1f+gSp90P8A5MNS+f4KaOf7mrzL+cYNcFXtc2q+DT8Kbac6FfvpS6u0a232zDiXyslt2OmOMVyP9v8Aw+H/ADKuon66if8ACvSx2DpylTbrwXuR/m6K38p42V5hVhGslhaj/eT25OrvbWa1OCorvf8AhIvh+P8AmUb4/XU2/wAKP+El8Aj/AJk27P11R/8ACvN+pUv+gmH/AJP/APIHs/2lX/6A6n/lP/5Ydp8bP3vwE+BU/rYanFn/AHboD+teHV9P/E3XvCI/Z4+DN3ceFprmyY6xHbW39oOpgxdLuywGW3HnnpXjv/CV+Ax/zIsx+ury/wCFaTwlKTu8RBbfz9vKD33X42ehhQzCvCFlhKj1ezp93prUWq2fS60bWpwVd58C2A+KOjKejidT/wB+Xpf+Et8Cj/mQXP11mb/Cuo+GXijwndeO9Jh07wadMvHkZY7s6pLL5fyNn5CMHIyPxrty3C0YY2hJYiDtOOlp66rTWFvvZ52c47EVctxMHg6iThNXbpWXuvV2qN6eSb7I8bZSrEHqDikqfUE8q/uU/uysP1NQV83JWbR9nF80U+4UUUVJQUUUUAFFFFABRRRQAUUUUAFd78Yv+QvoI9NEtB/46a4Ku9+Mf/Ib0UemjWn/AKCa9Wh/uVf1h+p4WK/5GWF9Kn/tpwDOqKWYhVHcnApn2qD/AJ7R/wDfQqLU/wDjxl/D+YrBrx3Kx9LTpKau2dH9qg/57R/99CvavDGt6da/sl+NLVr+1W8uvEVkFtzMokZFjJLBc5IHrXzlX1D4N+AXhGD4Iafe/EL4qaZ4H/ty6jvrS2t7CXU50jaP935yxEeUWHzDP8OORnjzcZm1DK4qde/vaJRjKcnp0jBSk7LfTTqdCy+OJ0crW1+48B+1Qf8APaP/AL6FH2qD/ntH/wB9Cuz+Pf7Pep/Ay80W4OrWXibwxr1ubrSNf00nybuMYyCDnawDKSMkYYcnnHlNaYPH0MwoRxOFlzQls/R2ej1TTumnqnoxSwvK7NnSpKkudjq+Ou05r0D4XfNpvjZf+oFOfyK15don/Lb/AID/AFr1H4UfND40X/qXbs/kUr6XKnfFQ+f/AKSz5bP48mCqLs4/+lROCoooryz2gooooAK9x/a/5+JOiP8A3/DemN/5Brw6vcf2u+fHfhd/7/hTTG/8hGto/wAOXy/U5Kn8en6S/Q8OooorE6wrQ8Ojd4g0wet1EP8Ax8Vn1p+Fxu8TaQPW8h/9DFbUdasfVfmc2JdqE35P8ja+LJ3fEjxAf+nph+grkq6r4qHPxF8Q/wDX44rla6cfrjK3+KX5s48qVsvw6/uR/wDSUFFFFcB6p6p+yw2z9obwIf8AqIqPzVq4jx4uzxz4iX01G5H/AJFauy/ZhbZ+0F4DP/UUiH55rkviOuz4h+KF9NVuh/5Gatn/AAl6v8kci/3l/wCFfmznaKKKxOs70fP8CD6p4j/Q21cFXe2vz/A69H9zXkb84MVwVerj9qL/ALi/U8LKt8Sv+nkvyTCiiivKPdPcfiL++/ZS+EL/APPHUNXi/OZWrw6vcfGH779kP4fP/wA8fEGoR/moavDq2q7r0X5HJhvhkv70vzYV1vwlfy/iR4fP/TyB+YIrkq6X4Zv5fxC8On/p+iH5sBXRgHy4ui/70fzRzZpHmwGIj3hL/wBJZk+IU8rX9TT+7dSj/wAfNUK2PGSeV4v1xP7t9OP/ACI1Y9YV1y1Zrzf5nXhZc1CnLul+QUUUVgdIUUUUAFFFFABRRRQAUUUUAFd78ZP+Q/pI9NItB/45XBV3vxm/5GPTB6aTa/8AoFerQ/3Kv6w/9uPCxP8AyM8N/hqf+2HnGp/8eMv4fzFYNb2p/wDHjL+H8xWDXiz3PrMP8LCvVvAfw98R/FHwRp/hzwxpc+save64SkMQ+6ogALOx4RBxliQBXlNfpVf/AAA+KHgj9mvwh4V+C+nJHfa7ZR3/AIl1yO8ht7uZ5YwxhR3ZSiDIHy4JAHTLZ+M4jz6nksKVPmhGpVbUXUlywjZXcpPstLRWsm0tNWvWwsb8+nQ+dv2vdc0bwh4D+GfwY0rVoNevvBVvcPrGoWrb4ReTMGaFG77DvB9MqDgggfL1eufF39lT4l/A7w5b6/4y0OLTdMubtbKOZL6CctMyO4Xajk/djc5xjj3ryOurh2GDp5fGOCrqtG8m5ppqU5ScpvS6XvN6dFoc9XmcveVjU0T/AJbf8B/rXqPwj5l8XL/e8OXg/wDQK8u0T/lt/wAB/rXqPwf51HxIv97QbwfotfoOU/73T+f5M+L4i/3Gs/JfmjgqKKK8w9cKKKKACvcf2tvm8WeCn/v+DtLb/wAhtXh1e4/tY/Nr3w8f+/4I0pv/AB162j/Dl8jkqfx6fz/Q8OooorE6wrW8Ijd4s0Uet7AP/Ii1k1s+Cxu8Y6CPW/gH/kRa6MPrWh6r8zkxjthqj/uv8i98Tzn4h+Iv+v2X/wBCrmK6T4lHd8QfEf8A1/zD/wAfNc3WuN1xVX/E/wA2YZYrYGgv7kfyQUUUVxHpHpX7NTbPj74BP/UXtx+bVznxSXZ8TfFy+msXg/8AIz1vfs5ts+PPgA/9Ru1H5yCsb4urs+K/jRfTW70f+R3rb/l18/0ORf7y/wDD+rOTooorE6zvdM+f4Ka0P7mrwt+aEVwVd7ofz/BvxMP7moWrfnkVwVerjvgw7/uL/wBKkeFln8XFr/p4/wD0iDCiiivKPdPcdb/ffsaeGn/54+MLmL87YNXh1e5Tfvv2Jbdu8Pj9k/A6fmvDa2q/Z9EcmH2mv7zCt3wE/leOfDr+mo25/wDIq1hVq+EpPK8VaM/929hP/j4q8M+WvB+a/MWMjzYarHvF/kW/iEnl+PfEa/8AURuD/wCRGrn66j4oR+X8RPEI9b2Q/mc/1rl6vGLlxNVf3n+ZllsubBUJd4R/JBRRRXGeiFFFFABRRRQAUUUUAFFFFABXe/Gf/kZ7Aeml2o/8crj9FtLO+1S3g1C//syzckSXfktL5Ywedi8nnA49a9e+J3hvwpe+ILZ9Q8YnTZlsYEWH+y5ZcoE+Vsg9xzjtXv4PDTr4GtyuK96O8ox/m7tf8Hpsz5TMcZSw2Z4bnUn7s/hhOW/L/LF9te2l91fwy+iaa1dEGWOMD8ayf7Muf+eX/jw/xr1v/hEPAv8A0P7f+Cab/Gj/AIRLwJ/0Psh/7g03+Ncbyus/tQ/8GU//AJI9SGfUIKyhU/8ABNX/AOQPJP7Muf8Anl/48P8AGvRvEPhXXLD4K+EtUlt3Swv7+7WCXzlO8oQGGA2Rj3Fav/CJ+BB/zPkp/wC4PL/jXsXxE8P+El/Zv+EdrP4rlgsGuNXmtroadIxuD9oUP8mcrtPHPWl/ZU38UoeX7yH4+9ov1sjRcSQhpCnPXR3pVVpvp7qu7paK+l3ayuvkR7G9cYZWYehcH+tN/sy5/wCeX/jw/wAa9b/4RbwH/wBDxOf+4TJ/jR/wi/gL/odrn/wUyf40f2VUX24f+DIf/JC/1gpf8+6n/gmr/wDInmel2stt5vmLt3YxyD616Z8G+dd1lf72j3Y/8dFH/CM+Af8AodLo/wDcKf8AxrrvhlofhC1167/s7xNc3872FwjRvYNGAhX5myT2HbvXqZZl9Sni6Tcob/zwf4Jnz+d5vRrYCulTqJtdaVRL73GyPFKK73/hHPAH/Q4Xp/7hjf40f8I78Px/zN18f+4Y3+Ned/ZtX+eH/gyH/wAkev8A2xQ/591P/BVT/wCROCorvf8AhHvh8P8Ambb8/TTT/jR/YHw+/wChr1H/AMFx/wAaP7Oqfzw/8Dh/mH9sUf8An1U/8FVP/kTgq9x/at51D4Xv/f8AAWkt+klcX/YPw9/6GnUj/wBw/wD+vXsX7SOleDbg/C99Q12+tseBtLW38qz3+ZCPN2ueeCeeO2K0jgKii488Nf78f8znnmtKVSElTqaX/wCXc7/JW1PmCiu9/sT4ef8AQy6r/wCAA/xo/sX4d/8AQx6sf+3Ef41n/Z1T/n5D/wADj/mdH9sUv+fVT/wXP/I4KtzwIN3jfw8PXUbf/wBGrXQ/2P8ADof8zDq5/wC3Jf8AGtfwfpXgJPFuiNZ63qs12t7CYY5LRVVn8wbQTngE4rpw2XzVeD9pDdfbj39Tjxub03hqqVKp8L/5dz7ehxnxFOfH3iP/ALCNx/6Mauer1TxhpvgKXxbrb3mtavHdtezmaOK1Uqr+Y24A55Gc1kf2X8OP+g3rZ/7dE/xoxWAnKvUftIat/bj39RYHNacMLSj7KppGP/LuXZeRwVFd7/Znw4/6DWuH/t1T/Gj+zvhv/wBBjXv/AAGjrm/s+X/PyH/ga/zO3+16f/Pmp/4Ll/kP/Z8bZ8dfh8f+o9ZD85lqh8Z12fGHx0vpr1+P/Jh67/4LWfgCH4xeBmstT1uS8GuWPkpLbxhGfz02hiO2cZpnxjsPh+Pi744+2ajrqXn9uX3nJDBGUV/tD7gpPbOcVp9RlycvtIb/AMysc/8AakPbc/sam1vglfft2PEqK737F8NR/wAxLxEfpBFR9j+Gn/QQ8Rn/ALYw1n/Z8v8An7D/AMCR0f2tH/nxU/8AAGHhr5/hF4zH9y5sm/NyK4Kva/Dlv4HPw+8XpbXetvpoaza7aSOISr+8OzYOh5657VyP2b4Z/wDP54m/79QV6WLwLlSw/wC8hpD+Zfzz2PGwGZxhXxf7mo71E/gen7unv2fX0szgqK737P8ADL/n68T/APfuCjyfhkP+XjxQf+AW9eb/AGe/+fsP/Akez/ay/wCfFT/wBnaWH779ivVE/wCePjmKX87LbXh1fT+gR+BZf2VfFUccuvtpEPiS1llLLD54kMRVdv8ADtx1zzXjvl/DAf8ALXxWf+A21aTwPNb97DRfzHPSzNQcv3FR3d9I/n5nBVd0OTyta09/7txGf/HhXYbfhh/f8WH8LapLd/hjFPG6nxZuVgRn7NjOaUMDyyT9tDT+9/wDSpmnPCUfq9TVfy/8Ezvi/H5fxK18f9PGfzUH+tcfXcfG1PL+KOuj/bjP5xIa4escyXLjq6/vy/NnRksubLMLLvTh/wCkoKKKK809kKKKKACiiigAooooAKKKKACu9+NX/I3249NOtf8A0WK4Ku9+NfHjOMelhbD/AMhivVo/7jW/xQ/9vPCxH/I0w3+Cp+dM4KiqepzvbwK0bbWLYzjPY1m/2nc/89f/AB0f4V5DkkfRwpSmro3q9x+Mv7n9nf4EW/8AdttYlx/v3an+lfO+n3r3N/bQ3F59lt5JVSScxhvLUkAtjvgc4r7XuND+BnxNg+Hnw6bx541W98l7HQNZl0+0jsHkllwN8ezzcPJjAYjqAWFePmGdUcpg5Vqc5JptuEHJRSabbtt6at9FoV/Z9WvKM4tWi7u77pr9T4/oq38UvCGs/Cf4h6/4R1S4jmvdIumtnliUbJQOVcZGQGUq3PrXLf2nc/8APX/x0f4V6NHE0sRSjWpO8ZJNPunqn80U8PNOzN6u9+CnPjR1/vWNyv8A5DNeSf2nc/8APX/x0f4V6v8AAhjL44s93LSWc+ff9y1e5lMk8fRX95fmfO8QU3DKsS3/ACS/I4aiiivMPYCiiigAr3H9qH5rL4PP6+AdMX8jLXh1e4/tNfNofwbf18D2K/k0lbQ+CXyOSr/Gp/P8jw6iiisTrCuh+HQ3eP8Aw5/2EYD/AORFrnq6T4aDd8QfDv8A1/wn/wAfFdmD1xNJf3l+Z52Yu2Crv+5L8mVvHJ3eNvEB9dRuD/5EasStjxmd3jDXT6385/8AIjVj1GJ1r1PV/ma4JWwtJf3V+SCiiiuY7Dtfge2z40+AG9PEGnn/AMmY6m+Pi7Pjl8Qh/wBTBfn87h6qfBptnxf8DN6a7Yn/AMmErR/aFXZ8dviAP+o7eH85mrb/AJdfP9Dk/wCYn/t39Tz6iiisTrO98EfN8NviCnrFZN+Uxrgq73wD83gbx6nrZwN+UtcFXq4v/d8M/wC6/wD0uZ4WX6YvGr+/H/01T/yCiiivKPdPcfA3779kn4mp/wA8dZ0yT8yy14dXuPwx/ffssfGpP+eN1osv53LLXh1bVPhh6fqzkofHVX97/wBtiFFFFYnWd78c/m+JmqSf89I4H/8AIKf4VwVd78bPm8bCT/npZWz/APkMf4VwVermv+/133lL8WeFkP8AyKsKu0Ir7kkFFFFeUe6FFFFABRRRQAUUUUAFFFFABXe/Gz/kdgPSytv/AEWK4Ku9+Nv/ACPTj0s7b/0UterR/wBwrf4oflM8LEf8jXDf4Kn50zzPWf8Aj1X/AHx/I1jVs6z/AMeq/wC+P5GsavElufW0PgCvun4MeAPg5/avw01Q+PE1Xx3Z2NreaT4a1SOXTLOe9yHRJLnypAQJeAByxUdQcV8X+DNGsPEXi3R9L1TVotB069uo7e41SZN6WiMwBlYZGQoOTyOnWvrLUv2TLCw1/wAJap4g+LXgTT/COlWds0+oWusB7i4RGLZgj2jcWGMc9+M4wfguKa+GdD6rWxU6Lkn8Eb8/Tl+Ft+kJRlrutD2MMmoTaV9vzPnb9oNvF0nxp8XS+O7Iad4rlvnlvbZP9XGWAKBCCcpsK7Tk5XBya89r2H9rX4vab8cPjv4h8U6LE8ejyeVbWjypteWOKMJ5jDqNxBIB5AIB5FePV9HkzqvLcN7ekqc+SN4raL5VeK7W2t0OOpbndncK9g+AXPxB0df70Ew/8gPXj9ev/AA4+JXh7PQpKP8AyA9fYZP/AMjDD/44/wDpSPk+Jv8AkUYr/r3P/wBJZxFFKw2sR6HFJXnnoBRRRQAV7j+0n83hX4Mv6+DbZfyd68Or3H9oz5vA/wAFn9fCca/lK1bQ+Cfy/M5Kv8Wn6v8AI8OooorE6wrp/heN3xD8O/8AX7Gf1rmK6r4VDPxG8Pf9faV3YHXF0v8AFH80eXmjtgMQ/wC5L/0lmV4tO7xXrR9b2b/0Y1ZVaXic7vEurH1u5j/4+azawr61Z+r/ADOrCq1CmvJfkFFFFYHUdX8JW2fFXwY3prVkf/I6Vt/tHLt+PXj8f9Rq6P8A5ENc/wDC9tnxL8JN6avaH/yMldL+0uuz4/ePR/1F5z+bZrb/AJdfP9Dkf+8r/C/zR5pRRRWJ1ne/Dn5vC3jtPXTA35OK4Ku9+GPzaN44T10WRvyZa4KvVxX+64d+Uv8A0pnhYHTG4xf3o/8ApEf8goooryj3T3H4O/vf2cPjzB6w6LJj/dvGP9a8Or3H4Gfvfgp8coPXSbKTH+7c5/rXh1bVPhh6fqzko/xKvqv/AElBRRRWJ1ne/GX5vEGkyf8APTSLR/8Axz/61cFXe/F75rrwrJ/z08PWb/o3+FcFXq5p/vtR93+aPCyL/kW0V2VvubQUUUV5R7oUUUUAFFFFABRRRQAUUUUAFd78b/8Akfpx6WtuP/IS1y/hvTtL1PUTDq+r/wBi2oQsLn7M0+WyMLtXnnnn2r1b4qeH/CV54xuJdT8WSadd+TCGtk02SXAEagHcDjkYPtmvoMJhZ1svquLiryhvKK2U+7XfTvrbZnyWPx1LD5tQU4ydoVNoTlu6f8sXfbW22l7XV/B9WjaS2UIpY7wcKM9jWT9ln/54yf8AfJr2D/hGvAC9fGV2/wDu6W4/maP7B+Hq9fFOpP8A7un4/ma4XllR7zh/4HD/ADPXhn1GCsqVR/8AcKp/8ieP/ZZ/+eMn/fJruvi5omo6ZqPh6C7sLq1f+w7RkWaFkLIQxDAEcg9jXTf2R8Ol6+INYf8A3bJR/M17F+1LZ+Cf+E+0aHVdQ1eK4tvD+nwolrChXyxFlSSe+DzR/ZcutSH/AIFG35mq4jUU4RoTs/7kk9Oya18+x8e/ZZ/+eMn/AHyaPss//PGT/vk17B9m+Ga9b3xK/wDuxQD+dGz4YL1fxW/+6LYUv7N71of+BIX9vdsPU/8AAGeP/ZZ/+eMn/fJr1f4Ekx/Enw7kYI3gg/8AXFxVnzPhivSHxU/+81uP5V0/wyuvAn/CdaQNKtNcTUDIwie7liMYOxs7gvPTNelluBVPG0Z+2g7Sj1815Hh53m0sRluIp/V6ivCau4q2sXvqeP3S7LqZfRyP1qOvRL7UPh1Fe3Cvo+uPIJGDH7UgGc81B/bPw7Xp4d1d/wDevgP5CuOWBgpO9eH3y/8AkTuhmlRxVsLUfyj/APJnBUV3v/CQfD5enhTUH/3tRI/kKP8AhJ/AK9PBV0/+9qsg/kKn6lS64mH/AJP/APIF/wBpV+mDqf8AlP8A+WHBV7j+0L83w4+Cj+vhor+UzVxf/CXeBV6eAXf/AHtZmH8hXsXxt8T+GLb4a/CCe48HJeQT6JKbeFtRlX7OomI25Ay3POTWkcJRUZL6xB38p6f+Sflc56mPxEpwf1SorN7ulro9v3nz1t9+h8wUV3v/AAnXhJfu+ALUf72ozH+lH/CwPDS/d8BaeP8AeupTWf1TD/8AQTH7p/8AyB0f2hi+mCn/AOBUv/lhwVdb8JRn4keH/wDr6H8jWh/wsXQl+74E0gf70kh/rXSfDfx3p2qeONItIPCOkWEks2BcQq3mR/KTkEnrXdgcNh1i6TWITfNHpLuu6PMzTG4x4DEJ4SSXJLVyhp7r10kzy7xCd2v6mfW6l/8AQzWfXo+qfE6zh1O7QeDPDshWZxvktixb5jyfm61V/wCFrxL93wX4VH+9p5P/ALNXLVw+Ec5N4jq/syO2jjMeqUUsI9l9uJwVFd7/AMLccfd8IeFE/wB3S/8A7Kj/AIXBdj7vhvw0n+7pg/xrP6vg/wDn/wD+Sv8AzNvreY9MKv8AwNf5GH8Om2fEHww3pqlqf/Iq11/7UC7P2gvHg/6ikh/PFS+Dfi/qUvi/Q4/7I0KJXvoFJj09QQDIvQ54Ndl+0n8UtX0L46+M7G3tdMMUN8VV5bJHcjap5Y9TzWnscHyW9s7X35f/ALYweIzD2yf1eN7PTn6XWt+U+eKK73/hdfiMfdTTU/3bCP8Awo/4Xf4rH3bm0T/dsov/AIms/Y4D/n9L/wAAX/yZv9YzXph4f+DH/wDKw+FPzW3jVPXw9dN+RSuDVGbopP0Fe1fDn4reJtdm8QJd30b/AGbRrm6g2W0S7ZVC7W4XnGTweK5Bvjp44b/mOEfS1gH/ALJXpV6eB+q0L1Z2963uLv8A9fNPxPFwtXNFjsTy0Kd3yXvUl/Lpb9077eXzOIW0nf7sMjfRDUi6Xev920nb6RN/hXXt8bPGzdddk/CCIf8AstRN8ZfGbdden/BEH/stebyZf/z8n/4BH/5M9r2ub/8APmn/AODJf/Kj0n9n3Sb0/Dr40W72dwrS+GwyKYmBYrMpwOOTXiq+GdYf7uk3x+ls/wDhX0H+zz8RvEutaF8Wlu9YuJ5Lbwdd3cBbH7t0ZMMMDrzXirfFbxe3XxDffhJitJRwPLG8p26aL/5I56c809pPlhTvpf3pdunu/wCRlL4Q15/u6JqJ+lpJ/hUq+B/Eb/d8P6o30spP/iatt8TvFjdfEWo/hcMKjb4j+Km6+I9U/C7cf1rO2X95/dH/ADOi+bvpT++X+R0Xxesbm0tvBhubeW3ddDggZZUKkMhbKkHuMjI9xXndeifFW/udT0DwRc3VxLcySaYSzyuWLNvwWJPc4GT7CvO6rNuX65Jx2aj/AOkojIef+z4Ke6c1ptpOSCiiivIPoAooooAKKKKACiiigAooooAK7344/wDJRr4ekNuP/IKVwVd78cv+SlaiPSK3H/kFK9Wl/wAi+t/jh+VQ8Kv/AMjbD/8AXur/AOlUjgqxv7Zn/ux/kf8AGtmuXrx5Ox9PQipXui//AGzP/dj/ACP+NelftCfEHUfFvxHkvLyG1imjsbS3CwIwUKkKgcFj/OvJgNxAHU19UTfsna18UPC/xL+JL6mmjaL4btWlt45bYyNqDQWgkkVTuG0DCru55J4+U15WPzTDZXSVXF1OSDaj11k3ZKyu+v6vQ9KGEp1KcpqN5Jq3o07/AJI+Zv7Zn/ux/kf8aP7Zn/ux/kf8aoUV6N2c/s4di/8A2zP/AHY/yP8AjXpPwgbb8StAP/Txj/x015PXqnwobb8R/D5/6elH869PLX/tlF/3o/mj5/PYJZdXSW8J/wDpLMDXF261qA9LiQf+PGqVaPiVdniLVV9LuUf+Pms6sKqtUkvNmuHd6MH5L8gooorI3Cvcfjv83wb+Bz+ujXa/lcV4dXuPxw+b4G/Ax/XTNQX8rkVtD4J+n6o5K38Sl6v/ANJZ4dRRRWJ1hXZ/BsZ+Jug/9dm/9AauMrtvgsN3xP0H/ro5/wDIb16WWa46h/jj+aPGzp2yvFP/AKdz/wDSWcnqp3apeH1mc/8AjxqrU9+d19cH1kY/qagrgnrJnq01aEV5BRRRUGhr+D22eLdEb0voD/5EWvRP2sl2ftF+OR/0+g/nGlea+Gm2eI9Kb0u4j/4+K9P/AGu12ftH+OB/09Rn84YzWy/hP1X5M5Jf7zH/AAv84nj9FFFYnWd78HedX15P7+iXa/8Ajorgq734Mc+J79P7+l3S/wDjlcFXq1/9yoPzn/7aeFhdMyxK/u0//bv8goooryj3T3H9lf8AeP8AFqD/AJ6/D/VgB7jyiK8Or3H9kv5/E/juD/nv4M1WPHr8in+leHVtL+HH5nJT/jVPkFFFFYnWd74++fwL4Bk9bOdP++Za4Ku98Z/P8L/h9J/s3yH8JhXBV6uZ/wC8J94U/wD03E8LJf8AdGu1SqvuqzQUUUV5R7oUUUUAFFFFABRRRQAUUUUAFd78dP8Akp2qj0SD/wBEpXBV3vx1/wCSpayPQQD/AMgR16tL/kX1v8dP8qh4Vb/kbYf/AK91f/SqJwVcvXUVg/2Zc/8APL/x4f4140kfUUJJXuzvfgF8GNV+OXxDtNCsHWzsIR9r1TVJuIbG0Q5klcnjpwASMkjoMkfbUPxWh8dD9obw7oga38F+FPAFzp+kW3TfmJ2luGH9+RuSfQLnnNfNH7Nn7QOq/CfQtS8EW3gjRfEtv4ov4kum1FmV5VO1EiJVgCgOTg8ZdvU19VfDf4l2SXP7QFjcfCjwtol34f8AD1zLeQ2qlhqWxHzBOQxBQ4wcHvX4nxhSzKq6uJr4Zyo03TVNqUbJucOabTd+Z/BHT3Y3/mdvdw9WjycimuZ9PKz6fqfmXRXV/EDVV8aeL9Q1qx8OWHhi1uihTStL+W3g2oqnYCc8lSx92Nc9/Zlz/wA8v/Hh/jX7JSc504ynHlbSut7PtdaaeWh5rnC+5Vr0/wCF7bfiH4dP/T7GP1rzr+zLn/nl/wCPD/GvQfhu234geHD/ANRCAf8Aj4r1cv0xVJ/3o/meFnTU8DWSf2JfkUfFq7PFWsr6Xsw/8iGsqtnxsu3xnry+moXA/wDIjVjUsSrVprzf5meDd8NTf91fkFFFFc51hXuPxp+b9n/4Ev62Wqr+V2teHV7j8Yvm/Zw+Az+sOtL+V4tbU/hn6fqjkrfxKXq//SZHh1FFFYnWFdz8ERu+KWhf78p/8hPXDV3nwMG74qaH9Zj/AOQZK9TKtcww/wDjj/6Ujw89dspxb/6dz/8ASWcPcndcyn1c/wA6jpXO52Pqc0leY9We1FWSQUUUUii5orbNZsG9LiM/+PCvWf2xV2ftJ+Nh/wBN4T+dvFXkNg2y+tm9JFP6ivY/2zl2ftL+NR/00tj+drDWy/hP1X5M5Jf7zH/DL84nitFFFYnWd78E/m8b7P79lcr/AOQjXBV3vwO5+I9in9+G4X/yC9cFXq1f9wov+9P8oHhYfTNcQv7lL86v+QUUUV5R7p7j+x/8/wAS9Zg/57+G9Sjx6/uc/wBK8Or3H9jP5/jhbQf899L1CLHr/ozn+leHVtL+HH1f6HJD/eJ+kf1CiiisTrO98T/vPhH4Kb/nnPep+cgNcFXe61+8+DPhxv8AnnqNyn5gGuCr1cx/iwf9yH/pCR4WT6Uaq7VKv41JP9Qoooryj3QooooAKKKKACiiigAooooAu6L/AGb/AGpb/wBr/av7OyfO+xbfOxg427uOuOtej+LPFHw58Y+ILrV72LxPHc3GzekAt1QbUCjAJJ6KO9eV0V6NDGzw9KVFQi02nqr6q6X3Xf3nkYrLaeLrxxDqSjKKcVyu2jab++y+5He7vhh/c8WH8bajzPhj/wA8vFZ/4FbVwVFaf2h/05h/4CY/2Sv+gip/4H/wD2P4YL8Obn4leEobWDxL9qk1e0SLzmg2bzMgXdjnGcZxWx8eL74fyfGnxwb+LxG17/a1yk5tpIRGWDkHbnnHHevHfBXiRvBvjLQdfW3F22lX9vfC3ZtolMUivtJwcZ24zjvTvHPih/G/jXX/ABFJALWTVr+e+aBW3CIySM+0HAzjdjOO1V9f93+FC/bl0Mv7JftP41S1t+fX09DovtHwz/59PE//AH8go+0/DP8A58/Ev/f2CuCoqf7Qf/PqH/gKNf7Jj/z/AKn/AIGzvftXw0/58fEh/wC20NX9A1v4caTrunXsVnr8MlvcRyrJLJEyKVYHLAckDHQc15nRVQzKcJKUaULr+6jOpk1OpBwlXqWat8bPS9c1r4b6lreoXb2OvTPcXEkrSRyxqjlmJJAPIBz0PNUft3w2/wCgX4gP/bxFXBUUSzKc5OTpQu/7qHDJqdOChGtUstPjZ3v9ofDb/oFa/wD+BMdH9o/Df/oEa9/4Ex1wVFT/AGhL/n3D/wAARf8AZEP+f1T/AMGS/wAzvf7T+HH/AEBtd/8AAqP/AArtfFfxX+HfiT4b+BvC50LXceGxfAM08ag/aJhJwwJLdO4GPevDaKX9oT/59w/8BQf2RS61aj/7fl+Gun+V0d7/AGr8OR/zAtaP/b4n+FH9r/Dr/oAayf8At8X/AArgqKf9oz/59w/8Aj/kH9kU/wDn9U/8GT/zO9/tj4df9C9rB/7fV/wqa08S+AtPuEntdD1u3nTO2WLUNjDIwcEc9Ca88oprMqkXdQh/4BH/ACE8moyTUqtRr/r5P/M73+2/h5/0Leqn/t/H+FH9ufDz/oWdUP8A2/8A/wBauCopf2jU/wCfcP8AwCP+Q/7Hpf8AP2p/4Mn/APJHe/278Pf+hX1M/wDcQ/8ArUf2/wDD3/oVdRP/AHET/hXBUUf2jU/kh/4BH/IP7Ho/8/an/g2f/wAkd/H4i+H6SKw8KahkEH/kIn/CvW/2s9f8FJ+0F4rF9oNxql1m1L3dvqBRJP8ARYcYA44GB+FfMtFH9o1P5If+AR/K349PmT/Y1G9/aVP/AAZO/wB/NdLuuul9kd7/AMJH8P8A/oUL3/wZt/hR/wAJJ4A/6E68P/cUf/CuCoo/tKr/ACQ/8Fw/+RK/seh/z8qf+Dan/wAkeneHviL4O8LavBqWneEbqK8h3BHbUmYDcpU8EY6E1nf8JP4BH/MlXR/7isn+FcFRVvNa7ioOMLLW3JDd2v8AZ62X3GayLCqbqKdTmaSb9rUu0r2XxdLu3qzvf+Eo8Bf9CRcf+DaT/Cj/AISnwH/0I8//AIN5P8K4Kio/tKt/JD/wXD/5E0/sbD/8/Kn/AINq/wDyZ9Hfsz/ET4faD8Z9Dup9Dj8MweXdI+qXuqu0UIa3kHzBgB8xwv1YV5d/wlngT/oQ5T9dYl/wrgqKP7Srf

      以上是关于Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解的主要内容,如果未能解决你的问题,请参考以下文章

      Codeforces Round #734 (Div. 3)-C. Interesting Story-题解

      Codeforces Round #734 (Div. 3)-B1. Wonderful Coloring - 1

      Codeforces Round #734 (Div. 3)-B2. Wonderful Coloring - 2-题解

      Codeforces Round #734 (Div. 3)-B2. Wonderful Coloring - 2-题解

      Codeforces Round #734 (Div. 3)-A. Polycarp and Coins-题解

      Codeforces Round #734 (Div. 3)-A. Polycarp and Coins-题解