Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解
Posted Tisfy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解相关的知识,希望对你有一定的参考价值。
在这里插入代码片
目录
Codeforces Round #734 (Div. 3)-A. Polycarp and Coins
传送门
Time Limit: 1 second
Memory Limit: 256 megabytes
Problem Description
Polycarp must pay exactly n n n burles at the checkout. He has coins of two nominal values: 1 1 1 burle and 2 2 2 burles. Polycarp likes both kinds of coins equally. So he doesn’t want to pay with more coins of one type than with the other.
Thus, Polycarp wants to minimize the difference between the count of coins of 1 1 1 burle and 2 2 2 burles being used. Help him by determining two non-negative integer values c 1 c_1 c1 and c 2 c_2 c2 which are the number of coins of 1 1 1 burle and 2 2 2 burles, respectively, so that the total value of that number of coins is exactly n n n (i. e. c 1 + 2 ⋅ c 2 = n c_1 + 2 \\cdot c_2 = n c1+2⋅c2=n), and the absolute value of the difference between c 1 c_1 c1 and c 2 c_2 c2 is as little as possible (i. e. you must minimize ∣ c 1 − c 2 ∣ |c_1-c_2| ∣c1−c2∣).
Input
The first line contains one integer t t t ( 1 ≤ t ≤ 1 0 4 1 \\le t \\le 10^4 1≤t≤104) — the number of test cases. Then t t t test cases follow.
Each test case consists of one line. This line contains one integer n n n ( 1 ≤ n ≤ 1 0 9 1 \\le n \\le 10^9 1≤n≤109) — the number of burles to be paid by Polycarp.
Output
For each test case, output a separate line containing two integers c 1 c_1 c1 and c 2 c_2 c2 ( c 1 , c 2 ≥ 0 c_1, c_2 \\ge 0 c1,c2≥0) separated by a space where c 1 c_1 c1 is the number of coins of 1 1 1 burle and c 2 c_2 c2 is the number of coins of 2 2 2 burles. If there are multiple optimal solutions, print any one.
Sample Input
6
1000
30
1
32
1000000000
5
Sample Onput
334 333
10 10
1 0
10 11
333333334 333333333
1 2
Note
The answer for the first test case is “334 333”. The sum of the nominal values of all coins is 334 ⋅ 1 + 333 ⋅ 2 = 1000 334 \\cdot 1 + 333 \\cdot 2 = 1000 334⋅1+333⋅2=1000, whereas ∣ 334 − 333 ∣ = 1 |334 - 333| = 1 ∣334−333∣=1. One can’t get the better value because if ∣ c 1 − c 2 ∣ = 0 |c_1 - c_2| = 0 ∣c1−c2∣=0, then c 1 = c 2 c_1 = c_2 c1=c2 and c 1 ⋅ 1 + c 1 ⋅ 2 = 1000 c_1 \\cdot 1 + c_1 \\cdot 2 = 1000 c1⋅1+c1⋅2=1000, but then the value of c 1 c_1 c1 isn’t an integer.
The answer for the second test case is “10 10”. The sum of the nominal values is 10 ⋅ 1 + 10 ⋅ 2 = 30 10 \\cdot 1 + 10 \\cdot 2 = 30 10⋅1+10⋅2=30 and ∣ 10 − 10 ∣ = 0 |10 - 10| = 0 ∣10−10∣=0, whereas there’s no number having an absolute value less than 0 0 0.
题目大意
n × m n\\times m n×m的方格,和一些 1 × 2 1\\times 2 1×2的多米诺骨牌。
多米诺骨牌可以横着放也可以竖着放,问你能不能正好有 k k k个多米诺骨牌是横着放的。
解题思路
分情况讨论就行了。但是要考虑周全。
首先如果方格是偶数行的:
如果要放奇数个水平的多米诺骨牌:
那么必定有某处的剩下的行数是奇数(总的偶数-水平的奇数),奇数就不能被2整除,就不能剩下的全部由竖着的来填充。所以直接输出
NO
。但如果要放偶数个水平的多米诺骨牌:
先考虑周全一些(不管k),这样如果是奇数行的话必定是偶数列,就能旋转90 。 ^。 。变成偶数行了。
那么我们就先尽量把最左边两列从上到下放满,然后第三四列从上到下…,看看最后一列有没有超出边界即可。
php4csh/6HXrYPkhRrVnBSceW19VqzwMx9pVxOHw0ajjGXM3yuz0Wmobfhgf4vFo/C2o2fDD/np4rH/AbavOLnUI7SQI6sSRn5QKi/tmD+7J+Q/xqf7QX/PmH/gP/BNlk02rqvV/8C/4B6Z5fwx/57eKh/wG3rr/AIefDH4ffEVPE7Weo+IrVdB0S51uczxwfvI4duUXH8R3DGeK8E/tmD+7J+Q/xr2f9m7xMEi+IumWWl6lquq634YudKsrXT4BLI8srJgbQcnp2BPtS/tKlFOVSnBRW7tt+JMslrtfuq1Vvtzf8AxPI+GX/P14n/79wUfZvhn/AM/niYf9soK84vL7+z7ue1ubeaC5gdopYpFwyOpwVIzwQQRUX9swf3ZPyH+NCzGDV1Rh9z/zL/sap/0EVf8AwJf/ACJ6Z9l+Gn/P94lH/bKGtTT/AAj4A1PRNV1WC/8AEH2TTPK+0Fo4Qw8xiq4HfkV5Na3qXe7YGG3Gdwr0XwV83wz+IK/9M7E/lMa78FiaeIquE6MLcs3s94wk117o8jMsFWwdFThial+emtWtpTjF/Z7N2D7F8NT/AMxLxEP+2EVH2H4bf9BTxCP+3eKuCpCQoJJwBySa4vr8f+fEPuf+Z6X9lz/6Cqn3x/8AkTvv7P8Aht/0Fdf/APAaKj+zvhv/ANBjXv8AwGjrz37VB/z2j/76FH2qD/ntH/30KX1+H/PiH3P/AOSH/ZNT/oJq/fH/AORPQv7M+HH/AEGddH/brH/jXWfFX4S+BvhN491PwrqPiLVri8sPK3yw2ibW8yJJBjn0cV5J4X0iXxf4m0jQtPlgN/ql5DY24kfC+ZI4RckZ4yw7V9l/tOfss638QPjZ4g1208YeCtPhuFtk+zanrQhuEZLeONgybDjlDj2xXj47ijKsskoY32cJPVJ82q6vfo7feVHJ8VOSUK9Vx1u7x0ell8PXX7j5j/sr4cn/AJjutD62af40f2R8Oj/zH9ZH/bmv+NcNqccel6ld2UlzbyyW0rwtJDIGRipIJU9xxwarfaoP+e0f/fQr145hTklJUIWflL/5IX9lVl/zFVfvj/8AIHoX9j/Do/8AMw6uP+3Jf8aBovw7P/Mx6t/4Aj/GuASRZBlGDDplTmpIxukUepAqljoP/mHh/wCTf/JEvLKq/wCYup98P/kD0jWvBXgnw9qc2n6jr2rWt5Dt8yJrFSVyoYdCR0INUv7C+Hn/AEM+p/8Agv8A/r0345nPxU1z6w/+iY64SuzG16OGxVWhGhBqMml8XRtfzHnZbhcRjMFQxM8VUUpwjJ25LXaTdvcO9/sH4e/9DTqQ/wC4f/8AXo/sD4ff9DXqP/guP+NcFRXH9dp/9A8P/J//AJM9H+zK3/QXU/8AKf8A8rPVvCHwu8L+PvEVpoOga/qWo6vd7/ItU0/aX2oztyzAcKrHr2rG/wCEd+H/AP0N98P+4Y3+Ndj+xU2z9pvwWf8Aaux+dnOK8UnXZNIvoxH61o8XSUFL6vDd/wA/l/f8zBYCu6sqf1upZJP/AJd9W/8Ap35Hdf8ACN+AP+hxvR/3DG/xo/4RrwD/ANDndj/uFv8A41wVFZ/XaX/QND/yf/5M3/s2v/0GVP8Ayn/8rO9/4RnwD/0Ol0P+4U/+NH/CL+Av+h2uP/BTJ/jTfFkaf8Kq8ByBVDb79WYDk/vhjNcJXVia1LDzUPq8HeMX9v7UVL+fpexw4PD18XTdRYuorSnH/l0/gnKN/wCF1tfyvY73/hFvAf8A0PE//gok/wAaP+EU8B/9D1MP+4RL/jXBUVy/XaP/AEDQ/wDJ/wD5M7v7NxH/AEG1Pupf/Kjvf+ET8Cf9D5IP+4PL/jR/wiPgU/8AM/OP+4NN/jXY/tN28SWPwhnijSPzPAemhtigbmUygk+p968Rq54qjCXL9Wh99T/5MypYHE1YKf1yovlS/wDlR3v/AAiHgU/81AYfXRZv8ani+HHh3VNP1WXRfGX9p3dhZS3zWx0uSHciDn5mbA6gd+vSvO6734P/ADaj4jj/AOeuhXifov8AhXRhKuHxVeNGWHgubqnO+3nNr8DkzChi8Dhp4mGMqNxs7NUrPVb2pp/c0cFRRRXz59aFFFFABRRRQAUUUUAFFFFABRRRQAV3vxd/4+PCY9PDtmP0auCrvfi9/wAfnhcenh+zH6NXq4f/AHOv/wBu/mzwsX/yMcL6T/JHlOs/8fS/7g/maoVf1n/j6X/cH8zVCvElufY0/gQV9+/8E/PjHpM/jDw54K0DwRpWhzC1cavr5/fX2pSCOR/vkDy0yo+UE9O3Ir4Cr6w/4Jtpn4/Wb+gYfnBP/hXw/GeCoYzIcW66vyU6klq0rqErNpOztur3Seu6R6eB/jpev5M+dPid/wAlJ8Wf9ha7/wDRz1zVdL8Tv+Sk+LP+wtd/+jnrmq+rwn+7U/8ACvyOKW7NTRP+W3/Af616j4E+b4feP1/6drU/lKa8u0T/AJbf8B/rXqPw/wDm8FePV/6cYW/KSvpsq/j/APbs/wD0iR8dxB/u9/79L/05A4Korr/j1m/3D/Kpaiuv+PWb/cP8q8w9mO6OcooornPWPS/2Z5LKD9oP4d3Go3UFjZW2uWlzLc3UixxxrHKr5ZmIAHy9TX0f+0b+yB4y+K/xR8beMvBeueFfF6XNy14NH0nVxJfpEfu7kKhc4xwHOe2eK+PPCXhHWPHfiC10PQLCXVNXu9/kWkGN8hVGdguTydqk46nGBzX1t8E/gt8So/2r/DevQaDq/h/SdIlt7nU9Vv7eS1gjt0iHnRs7gAll3JtGfvc8AkfnfEcpYCvPNaGLhTqU6T9yaTUkm5L7SkuZrlTXVaXeh6FCKnRcWuq/X8j42urWayuZbe4ieC4hcxyRSqVZGBwVIPIIPGKjr0X9ozxJpPjD47+PNa0Jkk0m91i4lt5o/uzKXP7weznLf8CrzqvucJWniMNTrVI8spRTa7Nq7Xy2OGSs2kbOjf8AHq3++f5CtO1G66hHq4H61maN/wAerf75/kK1tPG6/th6yqP1FepT1aPHxDs5M7H43HPxR13/AH4//RSVw9dr8aDn4n69/wBdU/8ARa1xVelmeuPr/wCOX/pTPDyRWyrCr/p3D/0lBRRRXmHtHtP7GbbP2l/BR/6a3I/O1mrx7UV2ahdL6SsP1NeufseNs/aS8EH/AKeJh+dvLXlGuLs1vUF9LiQf+PGtn/CXq/yRyR/3mX+GP5yKVFFFYnWd74k+f4Q+Dj/curxfzcGuCrvdb+f4NeGj/c1C5X8wDXBV6uY/xIP+5D/0hHhZPpRqr/p5V/8ATkmFFFFeUe6e4/tH/vfBvwXn9fCEMef92Rx/WvDq9x+Pv734U/BGf10CaPP+7OR/WvDq2rfH935HJhf4S9X+bCu9+DHzeJ7+P/nppd0n/jn/ANauCrvfgh83j6GP/npa3Cf+Qm/wrvyr/fqK7yX4s83Pf+RXiX2g39yucFRRRXlHuhRRRQAUUUUAFFFFABRRRQAUUUUAFd78X+L/AMND00GzH6NXBV7D450Lw7qlxob6x4n/ALDnTRrRUh/s+S43rtPzZU4HORj2r28FSlWwteEWr+7u1Fbvq2kfM5liIYbHYapNNq0/hjKT2j0im/wPC9Ts5ridWjTcoXGcgdzVT+zLn/nl/wCPD/GvW/8AhEfAo/5n9z9NGm/xo/4RTwIP+Z7mP00eX/GuZ5XWf2of+DKf/wAkehHP6EVZU6n/AIJq/wDyB5J/Zlz/AM8v/Hh/jXun7NviHxZ8IdI8V/Enw/pVnfS+H3s1YX7ZhBnMkIDKrq7cOcbTwQM8Vjf8Iv4CHXxvcH6aTJ/jXsXgfQ/CNp+zP8TEi8TXEun3Wo6ZHPdGwZWjZZGZVC5+bP6VhXyOOKozw+IcJQmmmueDumrWdnt38i48SxpPnpU5386VRaPR7xWttl1dtHsfKGvSX/iHXNR1W4gRJ765kuZFiOFDOxYgZJOMn1qj/Zlz/wA8v/Hh/jXrf/COfD8f8zffH6aY3+NH/CP/AA+H/M16gfppx/xrWOUyhFRjOCS/6eQ/zF/rBTf/AC6qf+Cqn/yJ5npdrLbeb5i7d2Mcg+temfDn5vCvjtf+oYp/JxR/YXw9H/Mz6mfpp/8A9euu8DaX4Mj0jxVHY63qFzC+mt9paS0CmOMMMsozyfavWy3ATp4hNzhtL7cXvF+Z8/nWb062Ff7uoveg9ac0tJxfVeR4pUV1/wAes3+4f5V6F/ZHw6HXX9YP0sl/xpH0j4bspVtb1tlIwQLRB/WvO/s6f/PyH/gcf8z2FnFNP+DU/wDBc/8AI8bor1v/AIRr4XD/AJievH6W6f40f8I78LR/y/8AiA/SGP8AxrL+zJ/8/Yf+Bo7v7epf8+Kv/guR5jomuaj4a1W21PSL+50vUrZt8F5ZzNFLE3TKupBB+levfHT46fEPxJfPompeNNbu9GltYTJYvev5MuUBO9QcNzzzms/+wPhWP+XvxGfpFF/jXqf7R3gf4XeH/H9rbyprlo0mk2UwjsyroQ0QIOXYnJ7jp6VxVcgo16sa1X2UpR2bcW16O2hvHiOlGnKn7Crd2+w+l79fM+UaK9b/ALG+FA/5aeKD9BB/jR/ZPwnH/Q1n6fZ/8a7f7Nf/AD+h/wCBGH9uw/6B6v8A4B/wTz3Rv+PVv98/yFbOkjdqtmPWZB/48K6+G3+FlshWMeLQCc4zbVe0o/DU6pZiBPFJmMyBPMNtt3bhjOO2a6KWX2lH99D/AMC/4B52IzfmjNrD1Nn9n/gmV8Yzu+Juv/8AXYD/AMcWuNr2H4jzeAf+E41f+1IfEL6gJsTG1eERbsD7uecfWub+0fDMf8uniY/WWCuvH4JTxlaXtoK8pdX3fkeZlWZOnl+Hh9XqO0IrSKt8K21OCorvftfw0H/Lh4jP1mho+3fDYf8AMM8Qn63EVcP1CP8Az/h97/yPV/tSX/QNU+5f/JHRfsits/aO8Dn/AKe3H5wyCvMvE67PEurL6Xcw/wDHzXvP7M+oeBT8d/Bq6ZpusRX5vMQyXE6Miko3UCuG8V6j8PIvFGsJLoutPKt5MHIukAJ3nOOK0eDjyKPtob73dun9051mM/bOX1apstLRvu9fi21PLaK73+1/h0P+YBrJ+t4v+FH9tfDsf8y5qx+t8P8ACs/qMP8AoIh/5N/8idH9p1f+gSp90P8A5MNS+f4KaOf7mrzL+cYNcFXtc2q+DT8Kbac6FfvpS6u0a232zDiXyslt2OmOMVyP9v8Aw+H/ADKuon66if8ACvSx2DpylTbrwXuR/m6K38p42V5hVhGslhaj/eT25OrvbWa1OCorvf8AhIvh+P8AmUb4/XU2/wAKP+El8Aj/AJk27P11R/8ACvN+pUv+gmH/AJP/APIHs/2lX/6A6n/lP/5Ydp8bP3vwE+BU/rYanFn/AHboD+teHV9P/E3XvCI/Z4+DN3ceFprmyY6xHbW39oOpgxdLuywGW3HnnpXjv/CV+Ax/zIsx+ury/wCFaTwlKTu8RBbfz9vKD33X42ehhQzCvCFlhKj1ezp93prUWq2fS60bWpwVd58C2A+KOjKejidT/wB+Xpf+Et8Cj/mQXP11mb/Cuo+GXijwndeO9Jh07wadMvHkZY7s6pLL5fyNn5CMHIyPxrty3C0YY2hJYiDtOOlp66rTWFvvZ52c47EVctxMHg6iThNXbpWXuvV2qN6eSb7I8bZSrEHqDikqfUE8q/uU/uysP1NQV83JWbR9nF80U+4UUUVJQUUUUAFFFFABRRRQAUUUUAFd78Yv+QvoI9NEtB/46a4Ku9+Mf/Ib0UemjWn/AKCa9Wh/uVf1h+p4WK/5GWF9Kn/tpwDOqKWYhVHcnApn2qD/AJ7R/wDfQqLU/wDjxl/D+YrBrx3Kx9LTpKau2dH9qg/57R/99CvavDGt6da/sl+NLVr+1W8uvEVkFtzMokZFjJLBc5IHrXzlX1D4N+AXhGD4Iafe/EL4qaZ4H/ty6jvrS2t7CXU50jaP935yxEeUWHzDP8OORnjzcZm1DK4qde/vaJRjKcnp0jBSk7LfTTqdCy+OJ0crW1+48B+1Qf8APaP/AL6FH2qD/ntH/wB9Cuz+Pf7Pep/Ay80W4OrWXibwxr1ubrSNf00nybuMYyCDnawDKSMkYYcnnHlNaYPH0MwoRxOFlzQls/R2ej1TTumnqnoxSwvK7NnSpKkudjq+Ou05r0D4XfNpvjZf+oFOfyK15don/Lb/AID/AFr1H4UfND40X/qXbs/kUr6XKnfFQ+f/AKSz5bP48mCqLs4/+lROCoooryz2gooooAK9x/a/5+JOiP8A3/DemN/5Brw6vcf2u+fHfhd/7/hTTG/8hGto/wAOXy/U5Kn8en6S/Q8OooorE6wrQ8Ojd4g0wet1EP8Ax8Vn1p+Fxu8TaQPW8h/9DFbUdasfVfmc2JdqE35P8ja+LJ3fEjxAf+nph+grkq6r4qHPxF8Q/wDX44rla6cfrjK3+KX5s48qVsvw6/uR/wDSUFFFFcB6p6p+yw2z9obwIf8AqIqPzVq4jx4uzxz4iX01G5H/AJFauy/ZhbZ+0F4DP/UUiH55rkviOuz4h+KF9NVuh/5Gatn/AAl6v8kci/3l/wCFfmznaKKKxOs70fP8CD6p4j/Q21cFXe2vz/A69H9zXkb84MVwVerj9qL/ALi/U8LKt8Sv+nkvyTCiiivKPdPcfiL++/ZS+EL/APPHUNXi/OZWrw6vcfGH779kP4fP/wA8fEGoR/moavDq2q7r0X5HJhvhkv70vzYV1vwlfy/iR4fP/TyB+YIrkq6X4Zv5fxC8On/p+iH5sBXRgHy4ui/70fzRzZpHmwGIj3hL/wBJZk+IU8rX9TT+7dSj/wAfNUK2PGSeV4v1xP7t9OP/ACI1Y9YV1y1Zrzf5nXhZc1CnLul+QUUUVgdIUUUUAFFFFABRRRQAUUUUAFd78ZP+Q/pI9NItB/45XBV3vxm/5GPTB6aTa/8AoFerQ/3Kv6w/9uPCxP8AyM8N/hqf+2HnGp/8eMv4fzFYNb2p/wDHjL+H8xWDXiz3PrMP8LCvVvAfw98R/FHwRp/hzwxpc+save64SkMQ+6ogALOx4RBxliQBXlNfpVf/AAA+KHgj9mvwh4V+C+nJHfa7ZR3/AIl1yO8ht7uZ5YwxhR3ZSiDIHy4JAHTLZ+M4jz6nksKVPmhGpVbUXUlywjZXcpPstLRWsm0tNWvWwsb8+nQ+dv2vdc0bwh4D+GfwY0rVoNevvBVvcPrGoWrb4ReTMGaFG77DvB9MqDgggfL1eufF39lT4l/A7w5b6/4y0OLTdMubtbKOZL6CctMyO4Xajk/djc5xjj3ryOurh2GDp5fGOCrqtG8m5ppqU5ScpvS6XvN6dFoc9XmcveVjU0T/AJbf8B/rXqPwj5l8XL/e8OXg/wDQK8u0T/lt/wAB/rXqPwf51HxIv97QbwfotfoOU/73T+f5M+L4i/3Gs/JfmjgqKKK8w9cKKKKACvcf2tvm8WeCn/v+DtLb/wAhtXh1e4/tY/Nr3w8f+/4I0pv/AB162j/Dl8jkqfx6fz/Q8OooorE6wrW8Ijd4s0Uet7AP/Ii1k1s+Cxu8Y6CPW/gH/kRa6MPrWh6r8zkxjthqj/uv8i98Tzn4h+Iv+v2X/wBCrmK6T4lHd8QfEf8A1/zD/wAfNc3WuN1xVX/E/wA2YZYrYGgv7kfyQUUUVxHpHpX7NTbPj74BP/UXtx+bVznxSXZ8TfFy+msXg/8AIz1vfs5ts+PPgA/9Ru1H5yCsb4urs+K/jRfTW70f+R3rb/l18/0ORf7y/wDD+rOTooorE6zvdM+f4Ka0P7mrwt+aEVwVd7ofz/BvxMP7moWrfnkVwVerjvgw7/uL/wBKkeFln8XFr/p4/wD0iDCiiivKPdPcdb/ffsaeGn/54+MLmL87YNXh1e5Tfvv2Jbdu8Pj9k/A6fmvDa2q/Z9EcmH2mv7zCt3wE/leOfDr+mo25/wDIq1hVq+EpPK8VaM/929hP/j4q8M+WvB+a/MWMjzYarHvF/kW/iEnl+PfEa/8AURuD/wCRGrn66j4oR+X8RPEI9b2Q/mc/1rl6vGLlxNVf3n+ZllsubBUJd4R/JBRRRXGeiFFFFABRRRQAUUUUAFFFFABXe/Gf/kZ7Aeml2o/8crj9FtLO+1S3g1C//syzckSXfktL5Ywedi8nnA49a9e+J3hvwpe+ILZ9Q8YnTZlsYEWH+y5ZcoE+Vsg9xzjtXv4PDTr4GtyuK96O8ox/m7tf8Hpsz5TMcZSw2Z4bnUn7s/hhOW/L/LF9te2l91fwy+iaa1dEGWOMD8ayf7Muf+eX/jw/xr1v/hEPAv8A0P7f+Cab/Gj/AIRLwJ/0Psh/7g03+Ncbyus/tQ/8GU//AJI9SGfUIKyhU/8ABNX/AOQPJP7Muf8Anl/48P8AGvRvEPhXXLD4K+EtUlt3Swv7+7WCXzlO8oQGGA2Rj3Fav/CJ+BB/zPkp/wC4PL/jXsXxE8P+El/Zv+EdrP4rlgsGuNXmtroadIxuD9oUP8mcrtPHPWl/ZU38UoeX7yH4+9ov1sjRcSQhpCnPXR3pVVpvp7qu7paK+l3ayuvkR7G9cYZWYehcH+tN/sy5/wCeX/jw/wAa9b/4RbwH/wBDxOf+4TJ/jR/wi/gL/odrn/wUyf40f2VUX24f+DIf/JC/1gpf8+6n/gmr/wDInmel2stt5vmLt3YxyD616Z8G+dd1lf72j3Y/8dFH/CM+Af8AodLo/wDcKf8AxrrvhlofhC1167/s7xNc3872FwjRvYNGAhX5myT2HbvXqZZl9Sni6Tcob/zwf4Jnz+d5vRrYCulTqJtdaVRL73GyPFKK73/hHPAH/Q4Xp/7hjf40f8I78Px/zN18f+4Y3+Ned/ZtX+eH/gyH/wAkev8A2xQ/591P/BVT/wCROCorvf8AhHvh8P8Ambb8/TTT/jR/YHw+/wChr1H/AMFx/wAaP7Oqfzw/8Dh/mH9sUf8An1U/8FVP/kTgq9x/at51D4Xv/f8AAWkt+klcX/YPw9/6GnUj/wBw/wD+vXsX7SOleDbg/C99Q12+tseBtLW38qz3+ZCPN2ueeCeeO2K0jgKii488Nf78f8znnmtKVSElTqaX/wCXc7/JW1PmCiu9/sT4ef8AQy6r/wCAA/xo/sX4d/8AQx6sf+3Ef41n/Z1T/n5D/wADj/mdH9sUv+fVT/wXP/I4KtzwIN3jfw8PXUbf/wBGrXQ/2P8ADof8zDq5/wC3Jf8AGtfwfpXgJPFuiNZ63qs12t7CYY5LRVVn8wbQTngE4rpw2XzVeD9pDdfbj39Tjxub03hqqVKp8L/5dz7ehxnxFOfH3iP/ALCNx/6Mauer1TxhpvgKXxbrb3mtavHdtezmaOK1Uqr+Y24A55Gc1kf2X8OP+g3rZ/7dE/xoxWAnKvUftIat/bj39RYHNacMLSj7KppGP/LuXZeRwVFd7/Znw4/6DWuH/t1T/Gj+zvhv/wBBjXv/AAGjrm/s+X/PyH/ga/zO3+16f/Pmp/4Ll/kP/Z8bZ8dfh8f+o9ZD85lqh8Z12fGHx0vpr1+P/Jh67/4LWfgCH4xeBmstT1uS8GuWPkpLbxhGfz02hiO2cZpnxjsPh+Pi744+2ajrqXn9uX3nJDBGUV/tD7gpPbOcVp9RlycvtIb/AMysc/8AakPbc/sam1vglfft2PEqK737F8NR/wAxLxEfpBFR9j+Gn/QQ8Rn/ALYw1n/Z8v8An7D/AMCR0f2tH/nxU/8AAGHhr5/hF4zH9y5sm/NyK4Kva/Dlv4HPw+8XpbXetvpoaza7aSOISr+8OzYOh5657VyP2b4Z/wDP54m/79QV6WLwLlSw/wC8hpD+Zfzz2PGwGZxhXxf7mo71E/gen7unv2fX0szgqK737P8ADL/n68T/APfuCjyfhkP+XjxQf+AW9eb/AGe/+fsP/Akez/ay/wCfFT/wBnaWH779ivVE/wCePjmKX87LbXh1fT+gR+BZf2VfFUccuvtpEPiS1llLLD54kMRVdv8ADtx1zzXjvl/DAf8ALXxWf+A21aTwPNb97DRfzHPSzNQcv3FR3d9I/n5nBVd0OTyta09/7txGf/HhXYbfhh/f8WH8LapLd/hjFPG6nxZuVgRn7NjOaUMDyyT9tDT+9/wDSpmnPCUfq9TVfy/8Ezvi/H5fxK18f9PGfzUH+tcfXcfG1PL+KOuj/bjP5xIa4escyXLjq6/vy/NnRksubLMLLvTh/wCkoKKKK809kKKKKACiiigAooooAKKKKACu9+NX/I3249NOtf8A0WK4Ku9+NfHjOMelhbD/AMhivVo/7jW/xQ/9vPCxH/I0w3+Cp+dM4KiqepzvbwK0bbWLYzjPY1m/2nc/89f/AB0f4V5DkkfRwpSmro3q9x+Mv7n9nf4EW/8AdttYlx/v3an+lfO+n3r3N/bQ3F59lt5JVSScxhvLUkAtjvgc4r7XuND+BnxNg+Hnw6bx541W98l7HQNZl0+0jsHkllwN8ezzcPJjAYjqAWFePmGdUcpg5Vqc5JptuEHJRSabbtt6at9FoV/Z9WvKM4tWi7u77pr9T4/oq38UvCGs/Cf4h6/4R1S4jmvdIumtnliUbJQOVcZGQGUq3PrXLf2nc/8APX/x0f4V6NHE0sRSjWpO8ZJNPunqn80U8PNOzN6u9+CnPjR1/vWNyv8A5DNeSf2nc/8APX/x0f4V6v8AAhjL44s93LSWc+ff9y1e5lMk8fRX95fmfO8QU3DKsS3/ACS/I4aiiivMPYCiiigAr3H9qH5rL4PP6+AdMX8jLXh1e4/tNfNofwbf18D2K/k0lbQ+CXyOSr/Gp/P8jw6iiisTrCuh+HQ3eP8Aw5/2EYD/AORFrnq6T4aDd8QfDv8A1/wn/wAfFdmD1xNJf3l+Z52Yu2Crv+5L8mVvHJ3eNvEB9dRuD/5EasStjxmd3jDXT6385/8AIjVj1GJ1r1PV/ma4JWwtJf3V+SCiiiuY7Dtfge2z40+AG9PEGnn/AMmY6m+Pi7Pjl8Qh/wBTBfn87h6qfBptnxf8DN6a7Yn/AMmErR/aFXZ8dviAP+o7eH85mrb/AJdfP9Dk/wCYn/t39Tz6iiisTrO98EfN8NviCnrFZN+Uxrgq73wD83gbx6nrZwN+UtcFXq4v/d8M/wC6/wD0uZ4WX6YvGr+/H/01T/yCiiivKPdPcfA3779kn4mp/wA8dZ0yT8yy14dXuPwx/ffssfGpP+eN1osv53LLXh1bVPhh6fqzkofHVX97/wBtiFFFFYnWd78c/m+JmqSf89I4H/8AIKf4VwVd78bPm8bCT/npZWz/APkMf4VwVermv+/133lL8WeFkP8AyKsKu0Ir7kkFFFFeUe6FFFFABRRRQAUUUUAFFFFABXe/Gz/kdgPSytv/AEWK4Ku9+Nv/ACPTj0s7b/0UterR/wBwrf4oflM8LEf8jXDf4Kn50zzPWf8Aj1X/AHx/I1jVs6z/AMeq/wC+P5GsavElufW0PgCvun4MeAPg5/avw01Q+PE1Xx3Z2NreaT4a1SOXTLOe9yHRJLnypAQJeAByxUdQcV8X+DNGsPEXi3R9L1TVotB069uo7e41SZN6WiMwBlYZGQoOTyOnWvrLUv2TLCw1/wAJap4g+LXgTT/COlWds0+oWusB7i4RGLZgj2jcWGMc9+M4wfguKa+GdD6rWxU6Lkn8Eb8/Tl+Ft+kJRlrutD2MMmoTaV9vzPnb9oNvF0nxp8XS+O7Iad4rlvnlvbZP9XGWAKBCCcpsK7Tk5XBya89r2H9rX4vab8cPjv4h8U6LE8ejyeVbWjypteWOKMJ5jDqNxBIB5AIB5FePV9HkzqvLcN7ekqc+SN4raL5VeK7W2t0OOpbndncK9g+AXPxB0df70Ew/8gPXj9ev/AA4+JXh7PQpKP8AyA9fYZP/AMjDD/44/wDpSPk+Jv8AkUYr/r3P/wBJZxFFKw2sR6HFJXnnoBRRRQAV7j+0n83hX4Mv6+DbZfyd68Or3H9oz5vA/wAFn9fCca/lK1bQ+Cfy/M5Kv8Wn6v8AI8OooorE6wrp/heN3xD8O/8AX7Gf1rmK6r4VDPxG8Pf9faV3YHXF0v8AFH80eXmjtgMQ/wC5L/0lmV4tO7xXrR9b2b/0Y1ZVaXic7vEurH1u5j/4+azawr61Z+r/ADOrCq1CmvJfkFFFFYHUdX8JW2fFXwY3prVkf/I6Vt/tHLt+PXj8f9Rq6P8A5ENc/wDC9tnxL8JN6avaH/yMldL+0uuz4/ePR/1F5z+bZrb/AJdfP9Dkf+8r/C/zR5pRRRWJ1ne/Dn5vC3jtPXTA35OK4Ku9+GPzaN44T10WRvyZa4KvVxX+64d+Uv8A0pnhYHTG4xf3o/8ApEf8goooryj3T3H4O/vf2cPjzB6w6LJj/dvGP9a8Or3H4Gfvfgp8coPXSbKTH+7c5/rXh1bVPhh6fqzko/xKvqv/AElBRRRWJ1ne/GX5vEGkyf8APTSLR/8Axz/61cFXe/F75rrwrJ/z08PWb/o3+FcFXq5p/vtR93+aPCyL/kW0V2VvubQUUUV5R7oUUUUAFFFFABRRRQAUUUUAFd78b/8Akfpx6WtuP/IS1y/hvTtL1PUTDq+r/wBi2oQsLn7M0+WyMLtXnnnn2r1b4qeH/CV54xuJdT8WSadd+TCGtk02SXAEagHcDjkYPtmvoMJhZ1svquLiryhvKK2U+7XfTvrbZnyWPx1LD5tQU4ydoVNoTlu6f8sXfbW22l7XV/B9WjaS2UIpY7wcKM9jWT9ln/54yf8AfJr2D/hGvAC9fGV2/wDu6W4/maP7B+Hq9fFOpP8A7un4/ma4XllR7zh/4HD/ADPXhn1GCsqVR/8AcKp/8ieP/ZZ/+eMn/fJruvi5omo6ZqPh6C7sLq1f+w7RkWaFkLIQxDAEcg9jXTf2R8Ol6+INYf8A3bJR/M17F+1LZ+Cf+E+0aHVdQ1eK4tvD+nwolrChXyxFlSSe+DzR/ZcutSH/AIFG35mq4jUU4RoTs/7kk9Oya18+x8e/ZZ/+eMn/AHyaPss//PGT/vk17B9m+Ga9b3xK/wDuxQD+dGz4YL1fxW/+6LYUv7N71of+BIX9vdsPU/8AAGeP/ZZ/+eMn/fJr1f4Ekx/Enw7kYI3gg/8AXFxVnzPhivSHxU/+81uP5V0/wyuvAn/CdaQNKtNcTUDIwie7liMYOxs7gvPTNelluBVPG0Z+2g7Sj1815Hh53m0sRluIp/V6ivCau4q2sXvqeP3S7LqZfRyP1qOvRL7UPh1Fe3Cvo+uPIJGDH7UgGc81B/bPw7Xp4d1d/wDevgP5CuOWBgpO9eH3y/8AkTuhmlRxVsLUfyj/APJnBUV3v/CQfD5enhTUH/3tRI/kKP8AhJ/AK9PBV0/+9qsg/kKn6lS64mH/AJP/APIF/wBpV+mDqf8AlP8A+WHBV7j+0L83w4+Cj+vhor+UzVxf/CXeBV6eAXf/AHtZmH8hXsXxt8T+GLb4a/CCe48HJeQT6JKbeFtRlX7OomI25Ay3POTWkcJRUZL6xB38p6f+Sflc56mPxEpwf1SorN7ulro9v3nz1t9+h8wUV3v/AAnXhJfu+ALUf72ozH+lH/CwPDS/d8BaeP8AeupTWf1TD/8AQTH7p/8AyB0f2hi+mCn/AOBUv/lhwVdb8JRn4keH/wDr6H8jWh/wsXQl+74E0gf70kh/rXSfDfx3p2qeONItIPCOkWEks2BcQq3mR/KTkEnrXdgcNh1i6TWITfNHpLuu6PMzTG4x4DEJ4SSXJLVyhp7r10kzy7xCd2v6mfW6l/8AQzWfXo+qfE6zh1O7QeDPDshWZxvktixb5jyfm61V/wCFrxL93wX4VH+9p5P/ALNXLVw+Ec5N4jq/syO2jjMeqUUsI9l9uJwVFd7/AMLccfd8IeFE/wB3S/8A7Kj/AIXBdj7vhvw0n+7pg/xrP6vg/wDn/wD+Sv8AzNvreY9MKv8AwNf5GH8Om2fEHww3pqlqf/Iq11/7UC7P2gvHg/6ikh/PFS+Dfi/qUvi/Q4/7I0KJXvoFJj09QQDIvQ54Ndl+0n8UtX0L46+M7G3tdMMUN8VV5bJHcjap5Y9TzWnscHyW9s7X35f/ALYweIzD2yf1eN7PTn6XWt+U+eKK73/hdfiMfdTTU/3bCP8Awo/4Xf4rH3bm0T/dsov/AIms/Y4D/n9L/wAAX/yZv9YzXph4f+DH/wDKw+FPzW3jVPXw9dN+RSuDVGbopP0Fe1fDn4reJtdm8QJd30b/AGbRrm6g2W0S7ZVC7W4XnGTweK5Bvjp44b/mOEfS1gH/ALJXpV6eB+q0L1Z2963uLv8A9fNPxPFwtXNFjsTy0Kd3yXvUl/Lpb9077eXzOIW0nf7sMjfRDUi6Xev920nb6RN/hXXt8bPGzdddk/CCIf8AstRN8ZfGbdden/BEH/stebyZf/z8n/4BH/5M9r2ub/8APmn/AODJf/Kj0n9n3Sb0/Dr40W72dwrS+GwyKYmBYrMpwOOTXiq+GdYf7uk3x+ls/wDhX0H+zz8RvEutaF8Wlu9YuJ5Lbwdd3cBbH7t0ZMMMDrzXirfFbxe3XxDffhJitJRwPLG8p26aL/5I56c809pPlhTvpf3pdunu/wCRlL4Q15/u6JqJ+lpJ/hUq+B/Eb/d8P6o30spP/iatt8TvFjdfEWo/hcMKjb4j+Km6+I9U/C7cf1rO2X95/dH/ADOi+bvpT++X+R0Xxesbm0tvBhubeW3ddDggZZUKkMhbKkHuMjI9xXndeifFW/udT0DwRc3VxLcySaYSzyuWLNvwWJPc4GT7CvO6rNuX65Jx2aj/AOkojIef+z4Ke6c1ptpOSCiiivIPoAooooAKKKKACiiigAooooAK7344/wDJRr4ekNuP/IKVwVd78cv+SlaiPSK3H/kFK9Wl/wAi+t/jh+VQ8Kv/AMjbD/8AXur/AOlUjgqxv7Zn/ux/kf8AGtmuXrx5Ox9PQipXui//AGzP/dj/ACP+NelftCfEHUfFvxHkvLyG1imjsbS3CwIwUKkKgcFj/OvJgNxAHU19UTfsna18UPC/xL+JL6mmjaL4btWlt45bYyNqDQWgkkVTuG0DCru55J4+U15WPzTDZXSVXF1OSDaj11k3ZKyu+v6vQ9KGEp1KcpqN5Jq3o07/AJI+Zv7Zn/ux/kf8aP7Zn/ux/kf8aoUV6N2c/s4di/8A2zP/AHY/yP8AjXpPwgbb8StAP/Txj/x015PXqnwobb8R/D5/6elH869PLX/tlF/3o/mj5/PYJZdXSW8J/wDpLMDXF261qA9LiQf+PGqVaPiVdniLVV9LuUf+Pms6sKqtUkvNmuHd6MH5L8gooorI3Cvcfjv83wb+Bz+ujXa/lcV4dXuPxw+b4G/Ax/XTNQX8rkVtD4J+n6o5K38Sl6v/ANJZ4dRRRWJ1hXZ/BsZ+Jug/9dm/9AauMrtvgsN3xP0H/ro5/wDIb16WWa46h/jj+aPGzp2yvFP/AKdz/wDSWcnqp3apeH1mc/8AjxqrU9+d19cH1kY/qagrgnrJnq01aEV5BRRRUGhr+D22eLdEb0voD/5EWvRP2sl2ftF+OR/0+g/nGlea+Gm2eI9Kb0u4j/4+K9P/AGu12ftH+OB/09Rn84YzWy/hP1X5M5Jf7zH/AAv84nj9FFFYnWd78HedX15P7+iXa/8Ajorgq734Mc+J79P7+l3S/wDjlcFXq1/9yoPzn/7aeFhdMyxK/u0//bv8goooryj3T3H9lf8AeP8AFqD/AJ6/D/VgB7jyiK8Or3H9kv5/E/juD/nv4M1WPHr8in+leHVtL+HH5nJT/jVPkFFFFYnWd74++fwL4Bk9bOdP++Za4Ku98Z/P8L/h9J/s3yH8JhXBV6uZ/wC8J94U/wD03E8LJf8AdGu1SqvuqzQUUUV5R7oUUUUAFFFFABRRRQAUUUUAFd78dP8Akp2qj0SD/wBEpXBV3vx1/wCSpayPQQD/AMgR16tL/kX1v8dP8qh4Vb/kbYf/AK91f/SqJwVcvXUVg/2Zc/8APL/x4f4140kfUUJJXuzvfgF8GNV+OXxDtNCsHWzsIR9r1TVJuIbG0Q5klcnjpwASMkjoMkfbUPxWh8dD9obw7oga38F+FPAFzp+kW3TfmJ2luGH9+RuSfQLnnNfNH7Nn7QOq/CfQtS8EW3gjRfEtv4ov4kum1FmV5VO1EiJVgCgOTg8ZdvU19VfDf4l2SXP7QFjcfCjwtol34f8AD1zLeQ2qlhqWxHzBOQxBQ4wcHvX4nxhSzKq6uJr4Zyo03TVNqUbJucOabTd+Z/BHT3Y3/mdvdw9WjycimuZ9PKz6fqfmXRXV/EDVV8aeL9Q1qx8OWHhi1uihTStL+W3g2oqnYCc8lSx92Nc9/Zlz/wA8v/Hh/jX7JSc504ynHlbSut7PtdaaeWh5rnC+5Vr0/wCF7bfiH4dP/T7GP1rzr+zLn/nl/wCPD/GvQfhu234geHD/ANRCAf8Aj4r1cv0xVJ/3o/meFnTU8DWSf2JfkUfFq7PFWsr6Xsw/8iGsqtnxsu3xnry+moXA/wDIjVjUsSrVprzf5meDd8NTf91fkFFFFc51hXuPxp+b9n/4Ev62Wqr+V2teHV7j8Yvm/Zw+Az+sOtL+V4tbU/hn6fqjkrfxKXq//SZHh1FFFYnWFdz8ERu+KWhf78p/8hPXDV3nwMG74qaH9Zj/AOQZK9TKtcww/wDjj/6Ujw89dspxb/6dz/8ASWcPcndcyn1c/wA6jpXO52Pqc0leY9We1FWSQUUUUii5orbNZsG9LiM/+PCvWf2xV2ftJ+Nh/wBN4T+dvFXkNg2y+tm9JFP6ivY/2zl2ftL+NR/00tj+drDWy/hP1X5M5Jf7zH/DL84nitFFFYnWd78E/m8b7P79lcr/AOQjXBV3vwO5+I9in9+G4X/yC9cFXq1f9wov+9P8oHhYfTNcQv7lL86v+QUUUV5R7p7j+x/8/wAS9Zg/57+G9Sjx6/uc/wBK8Or3H9jP5/jhbQf899L1CLHr/ozn+leHVtL+HH1f6HJD/eJ+kf1CiiisTrO98T/vPhH4Kb/nnPep+cgNcFXe61+8+DPhxv8AnnqNyn5gGuCr1cx/iwf9yH/pCR4WT6Uaq7VKv41JP9Qoooryj3QooooAKKKKACiiigAooooAu6L/AGb/AGpb/wBr/av7OyfO+xbfOxg427uOuOtej+LPFHw58Y+ILrV72LxPHc3GzekAt1QbUCjAJJ6KO9eV0V6NDGzw9KVFQi02nqr6q6X3Xf3nkYrLaeLrxxDqSjKKcVyu2jab++y+5He7vhh/c8WH8bajzPhj/wA8vFZ/4FbVwVFaf2h/05h/4CY/2Sv+gip/4H/wD2P4YL8Obn4leEobWDxL9qk1e0SLzmg2bzMgXdjnGcZxWx8eL74fyfGnxwb+LxG17/a1yk5tpIRGWDkHbnnHHevHfBXiRvBvjLQdfW3F22lX9vfC3ZtolMUivtJwcZ24zjvTvHPih/G/jXX/ABFJALWTVr+e+aBW3CIySM+0HAzjdjOO1V9f93+FC/bl0Mv7JftP41S1t+fX09DovtHwz/59PE//AH8go+0/DP8A58/Ev/f2CuCoqf7Qf/PqH/gKNf7Jj/z/AKn/AIGzvftXw0/58fEh/wC20NX9A1v4caTrunXsVnr8MlvcRyrJLJEyKVYHLAckDHQc15nRVQzKcJKUaULr+6jOpk1OpBwlXqWat8bPS9c1r4b6lreoXb2OvTPcXEkrSRyxqjlmJJAPIBz0PNUft3w2/wCgX4gP/bxFXBUUSzKc5OTpQu/7qHDJqdOChGtUstPjZ3v9ofDb/oFa/wD+BMdH9o/Df/oEa9/4Ex1wVFT/AGhL/n3D/wAARf8AZEP+f1T/AMGS/wAzvf7T+HH/AEBtd/8AAqP/AArtfFfxX+HfiT4b+BvC50LXceGxfAM08ag/aJhJwwJLdO4GPevDaKX9oT/59w/8BQf2RS61aj/7fl+Gun+V0d7/AGr8OR/zAtaP/b4n+FH9r/Dr/oAayf8At8X/AArgqKf9oz/59w/8Aj/kH9kU/wDn9U/8GT/zO9/tj4df9C9rB/7fV/wqa08S+AtPuEntdD1u3nTO2WLUNjDIwcEc9Ca88oprMqkXdQh/4BH/ACE8moyTUqtRr/r5P/M73+2/h5/0Leqn/t/H+FH9ufDz/oWdUP8A2/8A/wBauCopf2jU/wCfcP8AwCP+Q/7Hpf8AP2p/4Mn/APJHe/278Pf+hX1M/wDcQ/8ArUf2/wDD3/oVdRP/AHET/hXBUUf2jU/kh/4BH/IP7Ho/8/an/g2f/wAkd/H4i+H6SKw8KahkEH/kIn/CvW/2s9f8FJ+0F4rF9oNxql1m1L3dvqBRJP8ARYcYA44GB+FfMtFH9o1P5If+AR/K349PmT/Y1G9/aVP/AAZO/wB/NdLuuul9kd7/AMJH8P8A/oUL3/wZt/hR/wAJJ4A/6E68P/cUf/CuCoo/tKr/ACQ/8Fw/+RK/seh/z8qf+Dan/wAkeneHviL4O8LavBqWneEbqK8h3BHbUmYDcpU8EY6E1nf8JP4BH/MlXR/7isn+FcFRVvNa7ioOMLLW3JDd2v8AZ62X3GayLCqbqKdTmaSb9rUu0r2XxdLu3qzvf+Eo8Bf9CRcf+DaT/Cj/AISnwH/0I8//AIN5P8K4Kio/tKt/JD/wXD/5E0/sbD/8/Kn/AINq/wDyZ9Hfsz/ET4faD8Z9Dup9Dj8MweXdI+qXuqu0UIa3kHzBgB8xwv1YV5d/wlngT/oQ5T9dYl/wrgqKP7Srf以上是关于Codeforces Round #734 (Div. 3)-D1. Domino (easy version)-题解的主要内容,如果未能解决你的问题,请参考以下文章
Codeforces Round #734 (Div. 3)-C. Interesting Story-题解
Codeforces Round #734 (Div. 3)-B1. Wonderful Coloring - 1
Codeforces Round #734 (Div. 3)-B2. Wonderful Coloring - 2-题解
Codeforces Round #734 (Div. 3)-B2. Wonderful Coloring - 2-题解