目标检测中的评价指标mAP以及coco评价标准
Posted 九章_
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测中的评价指标mAP以及coco评价标准相关的知识,希望对你有一定的参考价值。
pycocotools安装
Linux: pip install pycocotools;
Windows: pip install pycocotools-windows
训练过程中输出值
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.785
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.597
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.425
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.442
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.643
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.656
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.278
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.727
含义:
第一行:COCO数据集评价指标
第二行:PASVOC数据集评价指标
第三行:IoU=0.75 相比0.50是比较严格的一个指标
第四行:检测小目标的的指标
第五行:检测中等目标的
第六行:检测大目标的指标
第七行:设置目标检测框只有1个
第八行:设置目标检测框有10个
第九行:设置目标检测框有100个 从图上看,10个和100个的指标值差不多
以上是关于目标检测中的评价指标mAP以及coco评价标准的主要内容,如果未能解决你的问题,请参考以下文章
目标检测算法之常见评价指标(mAP)的详细计算方法及代码解析