目标检测中的评价指标mAP以及coco评价标准

Posted 九章_

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测中的评价指标mAP以及coco评价标准相关的知识,希望对你有一定的参考价值。

pycocotools安装
Linux: pip install pycocotools;
Windows: pip install pycocotools-windows

训练过程中输出值

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.534 
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.785
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.597
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.172
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.425
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.442
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.643
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.656
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.278
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.558
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.727

含义:
第一行:COCO数据集评价指标
第二行:PASVOC数据集评价指标
第三行:IoU=0.75 相比0.50是比较严格的一个指标
第四行:检测小目标的的指标
第五行:检测中等目标的
第六行:检测大目标的指标
第七行:设置目标检测框只有1个
第八行:设置目标检测框有10个
第九行:设置目标检测框有100个 从图上看,10个和100个的指标值差不多

以上是关于目标检测中的评价指标mAP以及coco评价标准的主要内容,如果未能解决你的问题,请参考以下文章

目标检测评价指标总结

目标检测模型的评价标准-AP与mAP

目标检测算法之常见评价指标(mAP)的详细计算方法及代码解析

目标检测的评价标准mAP, Precision, Recall, Accuracy

目标检测评价指标(一文看懂)

目标检测评价指标(一文看懂)