python使用sklearn的PrecisionRecallDisplay来可视化PR曲线

Posted Data+Science+Insight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python使用sklearn的PrecisionRecallDisplay来可视化PR曲线相关的知识,希望对你有一定的参考价值。

python使用sklearn的PrecisionRecallDisplay来可视化PR曲线

目录

python使用sklearn的PrecisionRecallDisplay来可视化PR曲线

#模型构建

#PrecisionRecallDisplay来可视化PR曲线


#模型构建

print(__doc__)
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X, y = fetch_openml(data_id=1464, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y)

clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0))
clf.fit(X_train, y_train)

#PrecisionRecallDisplay来可视化PR曲线

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay

prec, recall, _ = precision_recall_curve(y_test, y_score,
                                         pos_label=clf.classes_[1])
pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot()

参考:RocCurveDisplay

参考:受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线)

以上是关于python使用sklearn的PrecisionRecallDisplay来可视化PR曲线的主要内容,如果未能解决你的问题,请参考以下文章

使用具有不同分类器的 sklearn precision_recall_curve 函数

使用 sklearn 计算 F1 分数

sklearn 如何计算average_precision_score?

sklearn报错解决方案UndefinedMetricWarning: Precision is ill-defined and being set to 0.0

sklearn报错解决方案UndefinedMetricWarning: Precision is ill-defined and being set to 0.0

多分类评价指标python代码