AWS DeepRacer 默认参数调优 实验一

Posted 架构师易筋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AWS DeepRacer 默认参数调优 实验一相关的知识,希望对你有一定的参考价值。

默认参数训练 60分钟,
Evaluation Results


Reward function

def reward_function(params):
    '''
    Example of rewarding the agent to follow center line
    '''
    
    # Read input parameters
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
    
    # Calculate 3 markers that are at varying distances away from the center line
    marker_1 = 0.1 * track_width
    marker_2 = 0.25 * track_width
    marker_3 = 0.5 * track_width
    
    # Give higher reward if the car is closer to center line and vice versa
    if distance_from_center <= marker_1:
        reward = 1.0
    elif distance_from_center <= marker_2:
        reward = 0.5
    elif distance_from_center <= marker_3:
        reward = 0.1
    else:
        reward = 1e-3  # likely crashed/ close to off track
    
    return float(reward)

以上是关于AWS DeepRacer 默认参数调优 实验一的主要内容,如果未能解决你的问题,请参考以下文章

DeepRacer 资源合集

翻译: AWS DeepRacer一步一步详细步骤的自定义航点更快地运行 自定义waypoints

翻译: AWS DeepRacer一步一步详细步骤的自定义航点更快地运行 自定义waypoints

AWS DeepRacer 强化学习RL,工作流程

AWS DeepRacer ROS 架构 模拟环境和真实赛道的区别

DeepRacer线下比赛总结 2022 地图 Re Invent 2018