获取TensorRT(TRT)模型输入和输出
Posted SpikeKing
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了获取TensorRT(TRT)模型输入和输出相关的知识,希望对你有一定的参考价值。
获取TensorRT(TRT)模型输入和输出,用于创建TRT的模型服务使用,具体参考脚本check_trt_script.py,如下:
- 脚本输入:TRT的模型路径和输入图像尺寸
- 脚本输出:模型的输入和输出结点信息,同时验证TRT模型是否可用
#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2021. All rights reserved.
Created by C. L. Wang on 16.9.21
"""
import argparse
import numpy as np
def check_trt(model_path, image_size):
"""
检查TRT模型
"""
import pycuda.driver as cuda
import tensorrt as trt
# 必须导入包,import pycuda.autoinit,否则报错
import pycuda.autoinit
print('[Info] model_path: {}'.format(model_path))
img_shape = (1, 3, image_size, image_size)
print('[Info] img_shape: {}'.format(img_shape))
trt_logger = trt.Logger(trt.Logger.WARNING)
trt_path = model_path # TRT模型路径
with open(trt_path, 'rb') as f, trt.Runtime(trt_logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
for binding in engine:
binding_idx = engine.get_binding_index(binding)
size = engine.get_binding_shape(binding_idx)
dtype = trt.nptype(engine.get_binding_dtype(binding))
print("[Info] binding: {}, binding_idx: {}, size: {}, dtype: {}"
.format(binding, binding_idx, size, dtype))
input_image = np.random.randn(*img_shape).astype(np.float32) # 图像尺寸
input_image = np.ascontiguousarray(input_image)
print('[Info] input_image: {}'.format(input_image.shape))
with engine.create_execution_context() as context:
stream = cuda.Stream()
bindings = [0] * len(engine)
for binding in engine:
idx = engine.get_binding_index(binding)
if engine.binding_is_input(idx):
input_memory = cuda.mem_alloc(input_image.nbytes)
bindings[idx] = int(input_memory)
cuda.memcpy_htod_async(input_memory, input_image, stream)
else:
dtype = trt.nptype(engine.get_binding_dtype(binding))
shape = context.get_binding_shape(idx)
output_buffer = np.empty(shape, dtype=dtype)
output_buffer = np.ascontiguousarray(output_buffer)
output_memory = cuda.mem_alloc(output_buffer.nbytes)
bindings[idx] = int(output_memory)
context.execute_async_v2(bindings, stream.handle)
stream.synchronize()
cuda.memcpy_dtoh(output_buffer, output_memory)
print("[Info] output_buffer: {}".format(output_buffer))
def parse_args():
"""
处理脚本参数
"""
parser = argparse.ArgumentParser(description='检查TRT模型')
parser.add_argument('-m', dest='model_path', required=True, help='TRT模型路径', type=str)
parser.add_argument('-s', dest='image_size', required=False, help='图像尺寸,如336', type=int, default=336)
args = parser.parse_args()
arg_model_path = args.model_path
print("[Info] 模型路径: {}".format(arg_model_path))
arg_image_size = args.image_size
print("[Info] image_size: {}".format(arg_image_size))
return arg_model_path, arg_image_size
def main():
arg_model_path, arg_image_size = parse_args()
check_trt(arg_model_path, arg_image_size) # 检查TRT模型
if __name__ == '__main__':
main()
注意:必须导入包,import pycuda.autoinit
,否则cuda.Stream()
报错,如下:
输出信息如下:
[Info] 模型路径: ../mydata/trt_models/model_best_c2_20210915_cuda.trt
[Info] image_size: 336
[Info] model_path: ../mydata/trt_models/model_best_c2_20210915_cuda.trt
[Info] img_shape: (1, 3, 336, 336)
[Info] binding: input_0, binding_idx: 0, size: (1, 3, 336, 336), dtype: <class 'numpy.float32'>
[Info] binding: output_0, binding_idx: 1, size: (1, 2), dtype: <class 'numpy.float32'>
[Info] input_image: (1, 3, 336, 336)
[Info] output_buffer: [[ 0.23275298 -0.2184143 ]]
有效信息为:
- 输入结点
binding: input_0
,输入尺寸size: (1, 3, 336, 336)
,输入类型dtype: <class 'numpy.float32'>
- 输出结果
binding: output_0
,输出尺寸size: (1, 2)
,输出类型dtype: <class 'numpy.float32'>
相应的json文件如下:
{
"model_path": "model_best_c2_20210915_cuda.trt",
"model_format": "trt",
"quant_type": "FP32",
"gpu_index": 0,
"inputs": {
"input_0": {
"shapes": [
1,
3,
336,
336
],
"type": "FP32"
}
},
"outputs": {
"output_0": {
"shapes": [
1,
2
],
"type": "FP32"
}
}
}
以上是关于获取TensorRT(TRT)模型输入和输出的主要内容,如果未能解决你的问题,请参考以下文章
我的NVIDIA开发者之旅 - 极智AI | TensorRT API 构建模型推理流程
将冻结图转换为 TRT 图时 Jetson Nano 上的 TensorRT 错误