大数据运维 docker搭建分布式图数据库nebula
Posted 脚丫先生
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据运维 docker搭建分布式图数据库nebula相关的知识,希望对你有一定的参考价值。
大家好,我是脚丫先生 (o^^o)
最近在做数据融合分析平台。需要搭建一个分布式图数据库,第一想法就是面向百度和官网搜索,但是大多数只看到单节点搭建,分布式搭建都是基于k8s。自己不想那么把项目搞这么重,于是考利用docker-compose进行分布式搭建。下面进行阐述搭建过程,希望能帮助到大家。
文章目录
一、图数据库nebula
Nebula Graph 是开源的第三代分布式图数据库,不仅能够存储万亿个带属性的节点和边,而且还能在高并发场景下满足毫秒级的低时延查询要求。不同于 Gremlin 和 Cypher,Nebula 提供了一种 SQL-LIKE 的查询语言 nGQL,通过三种组合方式(管道、分号和变量)完成对图的 CRUD 的操作。在存储层 Nebula Graph 目前支持 RocksDB 和 HBase 两种方式。
二、集群规划
主机名 | IP | Nebula服务 |
---|---|---|
spark1 | 192.168.239.128 | graphd0, metad-0, storaged-0 |
spark2 | 192.168.239.129 | graphd1, metad-1, storaged-1 |
spark3 | 192.168.239.130 | graphd2, metad-2, storaged-2 |
对于运维来说,之前搭建原生的环境,非常之麻烦,大部分时候搭建一个环境需要很多时间,而且交付项目,运维项目,都想把客户掐死。阿西吧
2.1 spark1节点的docker-compose
version: '3.4'
services:
metad0:
image: vesoft/nebula-metad:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.129:9559
- --local_ip=192.168.239.128
- --ws_ip=0.0.0.0
- --port=9559
- --ws_http_port=19559
- --data_path=/data/meta
- --log_dir=/logs
- --v=0
- --minloglevel=0
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.128:19559/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9559
- 19559
- 19560
volumes:
- ./data/meta0:/data/meta
- ./logs/meta0:/logs
restart: on-failure
storaged0:
image: vesoft/nebula-storaged:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --local_ip=192.168.239.128
- --ws_ip=0.0.0.0
- --port=9779
- --ws_http_port=19779
- --data_path=/data/storage
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad0
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.128:19779/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9779
- 19779
- 19780
volumes:
- ./data/storage0:/data/storage
- ./logs/storage0:/logs
restart: on-failure
graphd0:
image: vesoft/nebula-graphd:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --port=9669
- --ws_ip=0.0.0.0
- --ws_http_port=19669
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad0
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.128:19669/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- "9669:9669"
- 19669
- 19670
volumes:
- ./logs/graph:/logs
restart: on-failure
注意:
- 修改参数meta_server_addrs:
全部Meta服务的IP地址和端口。多个Meta服务用英文逗号(,)分隔 - 修改参数local_ip:
Meta服务的本地IP地址。本地IP地址用于识别nebula-metad进程,如果是分布式集群或需要远程访问,请修改为对应地址。 - 默认参数ws_ip:
HTTP服务的IP地址。预设值:0.0.0.0。
2.2 spark2节点的docker-compose(配置与spark1同理)
version: '3.4'
services:
metad1:
image: vesoft/nebula-metad:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.129:9559
- --local_ip=192.168.239.129
- --ws_ip=0.0.0.0
- --port=9559
- --ws_http_port=19559
- --data_path=/data/meta
- --log_dir=/logs
- --v=0
- --minloglevel=0
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.129:19559/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9559
- 19559
- 19560
volumes:
- ./data/meta1:/data/meta
- ./logs/meta1:/logs
restart: on-failure
storaged1:
image: vesoft/nebula-storaged:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --local_ip=192.168.239.129
- --ws_ip=0.0.0.0
- --port=9779
- --ws_http_port=19779
- --data_path=/data/storage
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad1
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.129:19779/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9779
- 19779
- 19780
volumes:
- ./data/storage1:/data/storage
- ./logs/storage1:/logs
restart: on-failure
graphd1:
image: vesoft/nebula-graphd:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --port=9669
- --ws_ip=0.0.0.0
- --ws_http_port=19669
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad1
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.129:19669/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- "9669:9669"
- 19669
- 19670
volumes:
- ./logs/graph1:/logs
restart: on-failure
2.3 spark3节点的docker-compose(配置与spark1同理)
version: '3.4'
services:
metad2:
image: vesoft/nebula-metad:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.129:9559
- --local_ip=192.168.239.130
- --ws_ip=192.168.239.130
- --port=9559
- --ws_http_port=19559
- --data_path=/data/meta
- --log_dir=/logs
- --v=0
- --minloglevel=0
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.130:19559/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9559
- 19559
- 19560
volumes:
- ./data/meta3:/data/meta
- ./logs/meta3:/logs
restart: on-failure
storaged2:
image: vesoft/nebula-storaged:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --local_ip=192.168.239.130
- --ws_ip=192.168.239.130
- --port=9779
- --ws_http_port=19779
- --data_path=/data/storage
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad2
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.130:19779/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- 9779
- 19779
- 19780
volumes:
- ./data/storage3:/data/storage
- ./logs/storage3:/logs
restart: on-failure
graphd2:
image: vesoft/nebula-graphd:v2.0.0
privileged: true
network_mode: host
environment:
USER: root
TZ: "${TZ}"
command:
- --meta_server_addrs=192.168.239.128:9559,192.168.239.129:9559,192.168.239.130:9559
- --port=9669
- --ws_ip=0.0.0.0
- --ws_http_port=19669
- --log_dir=/logs
- --v=0
- --minloglevel=0
depends_on:
- metad2
healthcheck:
test: ["CMD", "curl", "-sf", "http://192.168.239.128:19669/status"]
interval: 30s
timeout: 10s
retries: 3
start_period: 20s
ports:
- "9669:9669"
- 19669
- 19670
volumes:
- ./logs/graph:/logs
restart: on-failure
三、客户端
不说这么花里胡哨的,直接上docker-compose
version: '3.4'
services:
client:
image: vesoft/nebula-http-gateway:v2
environment:
USER: root
ports:
- 8080
networks:
- nebula-web
web:
image: vesoft/nebula-graph-studio:v2
environment:
USER: root
UPLOAD_DIR: ${MAPPING_DOCKER_DIR}
ports:
- 7001
depends_on:
- client
volumes:
- ${UPLOAD_DIR}:${MAPPING_DOCKER_DIR}:rw
networks:
- nebula-web
importer:
image: vesoft/nebula-importer:v2
networks:
- nebula-web
ports:
- 5699
volumes:
- ${UPLOAD_DIR}:${MAPPING_DOCKER_DIR}:rw
command:
- "--port=5699"
- "--callback=http://nginx:7001/api/import/finish"
nginx:
image: nginx:alpine
volumes:
- ./nginx/nginx.conf:/etc/nginx/conf.d/nebula.conf
- ${UPLOAD_DIR}:${MAPPING_DOCKER_DIR}:rw
depends_on:
- client
- web
networks:
- nebula-web
ports:
- 7001:7001
networks:
nebula-web:
谷歌浏览器访问web界面: http://192.168.239.128:7001
利用SHOW HOSTS;
以上是关于大数据运维 docker搭建分布式图数据库nebula的主要内容,如果未能解决你的问题,请参考以下文章
大数据运维 docker搭建图数据库nebula适配国产化服务器