模糊控制器设计源码程序

Posted fpga&matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模糊控制器设计源码程序相关的知识,希望对你有一定的参考价值。

clear        % Clear all variables in memory
clc;
close all;

eold=0;     % Intial condition used to calculate c
rold=0;     % Intial condition used to calculate r
yeold=0;     % Intial condition used to calculate yc
ymold=0;     % Initial condition for the first order reference model

% Next, initialize parameters for the fuzzy controller

nume=11;     % Number of input membership functions for the e
            % universe of discourse
numc=11;     % Number of input membership functions for the c
            % universe of discourse

ge=1/2;,gc=1/2;,gu=5;
        % Scaling gains for tuning membership functions for
        % universes of discourse for e, c and u respectively
        % These are tuned to improve the performance of the FMRLC
we=0.2*(1/ge);
    % we is half the width of the triangular input membership
    % function bases (note that if you change ge, the base width
    % will correspondingly change so that we always end
    % up with uniformly distributed input membership functions)
    % Note that if you change nume you will need to adjust the
    % "0.2" factor if you want membership functions that
    % overlap in the same way.
wc=0.2*(1/gc);
    % Similar to we but for the c universe of discourse
base=0.4*gu;
    % Base width of output membership fuctions of the fuzzy
    % controller

% Place centers of membership functions of the fuzzy controller:

%  Centers of input membership functions for the e universe of
% discourse for  of fuzzy controller (a vector of centers)
ce=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/ge);

% Centers of input membership functions for the c universe of
% discourse for  of fuzzy controller (a vector of centers)
cc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gc);
gf=0;

fuzzyrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
        -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
        -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
        -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
        -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
        -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
      -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
      -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
      -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
      -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
       0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gu*gf;

% Next, we define some parameters for the fuzzy inverse model

gye=1/2;,gyc=1/2;
    % Scaling gains for the error and change in error for
    % the inverse model
    % These are tuned to improve the performance of the FMRLC
gp=0.2;

numye=11;     % Number of input membership functions for the ye
            % universe of discourse
numyc=11;     % Number of input membership functions for the yc
            % universe of discourse

wye=0.2*(1/gye);    % Sets the width of the membership functions for
                    % ye from center to extremes
wyc=0.2*(1/gyc);    % Sets the width of the membership functions for
                    % yc from center to extremes
invbase=0.4*gp; % Sets the base of the output membership functions
                % for the inverse model

% Place centers of inverse model membership functions
% For error input for learning Mechanism
cye=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gye);

% For change in error input for learning mechanism
cyc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gyc);

% The next matrix contains the rule-base matrix for the fuzzy
% inverse model.  Notice that for simplicity we choose it to have
% the same structure as the rule-base for the fuzzy controller.
% While this will work for the control of the simple first order
% linear system for many nonlinear systems a different structure
% will be needed for the rule-base.  Again, the entries are
% the centers of the output membership functions, but now for
% the fuzzy inverse model.

inverrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
        -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
        -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
        -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
        -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
        -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
      -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
      -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
      -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
      -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
       0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gp;

% Next, we set up some parameters/variables for the
% knowledge-base modifier

d=1;
% This sets the number of steps the knowledge-base modifier looks
% back in time. For this program it must be an integer
% less than or equal to 10 (but this is easy to make larger)

% The next four vectors are used to store the information about
% which rules were on 1 step in the past, 2 steps in the past, ....,
% 10 steps in the past (so that picking 0<= d <= 10 can be used).

meme_int=[0 0 0 0 0 0 0 0 0 0];
    % sets up the vector to store up to 10 values of e_int
meme_count=[0 0 0 0 0 0 0 0 0 0];
    % sets up the vector to store up to 10 values of e_count
memc_int=[0 0 0 0 0 0 0 0 0 0];
    % sets up the vector to store up to 10 values of c_int
memc_count=[0 0 0 0 0 0 0 0 0 0];
    % sets up the vector to store up to 10 values of c_count

%
%  Next, we intialize the simulation of the closed-loop system.
%

k_p=1;      % The numerator of the plant.  Change this value to study
          % the ability of the FMRLC to control other plants.  Also,
          % you can make this a time-varying parameter.
zeta_p=.707;
       % Damping ratio for the second order plant (could change this
       % to see how the system will adapt to it)
w_p=1; % Undamped natural frequency for the plant (could change this
       % to see how the system will adapt to it)
k_r=1;
 % The numerator of the reference model.  Change this value to study
 % the ability of the FMRLC to meet other performance specifications.
a_r=1;
    % The value of -a_r is the pole position for the reference model.
    % Change this value to study the ability of the FMRLC to meet
    % other performance specifications (e.g., a faster response).

t=0;         % Reset time to zero
index=1;    % This is time's index (not time, its index).
tstop=64;    % Stopping time for the simulation (in seconds)
step=0.01;  % Integration step size
x=[0;0];    % Intial condition on state    of the plant

% Need a state space representation for the plant.  Since our
% plant is linear we use the standard form of xdot=Ax+Bu, y=Cx+Du
% Matrix A of state space representation of plant

A=[0 1;
   -w_p^2 -2*zeta_p*w_p];
B=[0; 1];        % Matrix B of state space representation of plant
C=[k_p 0];        % Matrix C of state space representation of plant


%
% Next, we start the simulation of the system.  This is the main
% loop for the simulation of the FMRLC.
%
while t <= tstop
    y(index)=C*x;     % Output of the plant

% Next, we define the reference input r as a sine wave

r(index)=sin(.6*t);

ym(index)=(1/(2+a_r*step))*((2-a_r*step)*ymold+...
                                    k_r*step*(r(index)+rold));

ymold=ym(index);
rold=r(index);
    % This saves the past value of the ym (r) so that we can use it
    % the next time around the loop

% Now that we have simulated the next step for the plant and reference
% model we will focus on the two fuzzy components.

% First, for the given fuzzy controller inputs we determine
% the extent at which the error membership functions
% of the fuzzy controller are on (this is the fuzzification part).

c_count=0;,e_count=0;   % These are used to count the number of
                        % non-zero mf certainitie of e and c
e=r(index)-y(index);
            % Calculates the error input for the fuzzy controller
c=(e-eold)/step;
    % Calculates the change in error input for the fuzzy controller
eold=e;
% Saves the past value of e for use in the next time through the
% loop

% The following if-then structure fills the vector mfe
% with the certainty of each membership fucntion of e for the
% current input e

    if e<=ce(1)        % Takes care of saturation of the left-most
                    % membership function
         mfe=[1 0 0 0 0 0 0 0 0 0 0]; % i.e., the only one on is the
                                       %left-most one
     e_count=e_count+1;,e_int=1;       %  One mf on, it is the
                                       %left-most one.
    elseif e>=ce(nume)                  % Takes care ofsaturation
                                      %of the right-most mf
     mfe=[0 0 0 0 0 0 0 0 0 0 1];
     e_count=e_count+1;,e_int=nume; % One mf on, it is the
                                     %right-most one
    else      % In this case the input is on the middle part of the
              % universe of discourse for e
              % Next, we are going to cycle through the mfs to
              % find all that are on
       for i=1:nume
         if e<=ce(i)
          mfe(i)=max([0 1+(e-ce(i))/we]);
                          % In this case the input isto the
                          % left of the center ce(i)and we compute
                        % the value of the mfcentered at ce(i)
                        % for this input e
            if mfe(i)~=0
                % If the certainty is not equal to zerothen say
                % that have one mf on by incrementing our count
             e_count=e_count+1;
             e_int=i;    % This term holds the index last entry
                         % with a non-zero term
            end
         else
          mfe(i)=max([0,1+(ce(i)-e)/we]);
                                  % In thiscase the input is to the
                                  % right ofthe center ce(i)
            if mfe(i)~=0
             e_count=e_count+1;
             e_int=i;  % This term holds the index of the
                        % last entry with a non-zero term
            end
         end
        end
    end

% Next we will save the number of mfs that are on and the pointer
% e_int as to which rules were on.  This vector of length
% 10 saves the last 10 values of e_count and e_int as time
% progresses (hence, it is a moving window).
% These will be used by the FMRLC knowledge-base modifier.

meme_count=[e_count meme_count(1:9)];
meme_int=[e_int meme_int(1:9)];

% The following if-then structure fills the vector mfc with the
% certainty of each membership fucntion of c for the current
% value of c (to understand this part of the code see the above
% similar code for computing mfe)

    if c<=cc(1)    % Takes care of saturation of left-most mf
         mfc=[1 0 0 0 0 0 0 0 0 0 0];
     c_count=c_count+1;
     c_int=1;
    elseif c>=cc(numc)
                % Takes care of saturation of the right-most mf
     mfc=[0 0 0 0 0 0 0 0 0 0 1];
     c_count=c_count+1;
     c_int=numc;
    else
        for i=1:numc
         if c<=cc(i)
          mfc(i)=max([0,1+(c-cc(i))/wc]);
            if mfc(i)~=0
             c_count=c_count+1;
             c_int=i;      % This term holds last entry
                         % with a non-zero term
            end
         else
          mfc(i)=max([0,1+(cc(i)-c)/wc]);
            if mfc(i)~=0
             c_count=c_count+1;
             c_int=i;    % This term holds last entry
                         % with a non-zero term
            end
         end
        end
    end
% Next we will save the number of mfs that are on and the pointer
% c_int as to which rules were on.  This vector of length 10
% saves the last 10 values of c_count and e_int as time progresses
% (hence, it is a moving window). These will be used by the FMRLC
% knowledge-base modifier.

memc_count=[c_count memc_count(1:9)];
memc_int=[c_int memc_int(1:9)];

% These for loops calculate the crisp output using only the non-
% zero premise of error,e, and change in error,c.  This cuts down
% computation time since we will only compute
% the contribution from the rules that are on (i.e., a maximum of
% four rules for our case).  Minimum is used for the premise
% and implication.

num=0;
den=0;
    for k=(e_int-e_count+1):e_int
                        % Scan over e indices ofmfs that are on
        for l=(c_int-c_count+1):c_int
                        % Scan over c indices ofmfs that are on
          prem=min([mfe(k) mfc(l)]);
                          % Value of premisemembership function
 % This next calculation of num adds up the numerator for the
 % defuzzification formula. fuzzyrules(k,l) is the output center
 % for the rule.base*(prem-(prem)^2/2 is the area of a symmetric
 % triangle with base width "base" and that is chopped off at
 % a height of prem (since we use minimum to represent the
 % implication). Computation of den is similar but without
 % fuzzyrules(k,l).
          num=num+fuzzyrules(k,l)*base*(prem-(prem)^2/2);
          den=den+base*(prem-(prem)^2/2);
        end
    end

   u(index)=num/den;
               % Crisp output of fuzzy controller that is the input
               % to the plant

% Next, we perform computations for the fuzzy inverse model.

ye=ym(index)-y(index);        % Calculates ye
yc=(ye-yeold)/step;            % Calculates yc
yeold=ye;                    % Saves the value of ye for use the
                            % next time

ye_count=0;,yc_count=0;        % Counts the non-zero certainties
                            % of ye and ycsimilar to how we did
                            % for the fuzzycontroller

% The following if-then structure fills the vector mfye with the
% certainty of each membership fucntion of ye (similar to the
% fuzzy controller).  Notice that we use the same number of
% input membership functions as in the fuzzy controller -
% just for convenience - it does not have to be this way

    if ye<=cye(1)            % Takes care of saturation
         mfye=[1 0 0 0 0 0 0 0 0 0 0];
     ye_count=ye_count+1;,ye_int=1;
    elseif ye>=cye(numye)    % Takes care of saturation
     mfye=[0 0 0 0 0 0 0 0 0 0 1];
     ye_count=ye_count+1;,ye_int=numye;
    else
        for i=1:numye
         if ye<=cye(i)
          mfye(i)=max([0 1+(ye-cye(i))/wye]);
            if mfye(i)~=0
             ye_count=ye_count+1;
             ye_int=i;    % This term holds last entry with
                         % a non-zero term
            end
         else
          mfye(i)=max([0,1+(cye(i)-ye)/wye]);
            if mfye(i)~=0
             ye_count=ye_count+1;
             ye_int=i;    % This term holds last entry with
                         % a non-zero term
            end
         end
        end
    end

% The following if-then structure fills the vector mfyc with the
% certainty of each membership fucntion of yc

    if yc<=cyc(1)
         mfyc=[1 0 0 0 0 0 0 0 0 0 0];
     yc_count=yc_count+1;,yc_int=1;
    elseif yc>=cyc(numyc)
     mfyc=[0 0 0 0 0 0 0 0 0 0 1];
     yc_count=yc_count+1;,yc_int=numyc;
    else
        for i=1:numyc
         if yc<=cyc(i)
          mfyc(i)=max([0 1+(yc-cyc(i))/wyc]);
            if mfyc(i)~=0
             yc_count=yc_count+1;
             yc_int=i;
            end
         else
          mfyc(i)=max([0,1+(cyc(i)-yc)/wyc]);
            if mfyc(i)~=0
             yc_count=yc_count+1;
             yc_int=i;
            end
         end
        end
    end

% These for loops calculate the crisp output of the inverse model
% using only the non-zero premise of error,ye, and change in
% error,yc.  This cuts down computation time (similar to the
% fuzzy controller). Minimum is used for the premise and the
% implication.  To understand this part of the code see the
% similar code for the fuzzy controller.

invnum=0;
invden=0;
    for k=(ye_int-ye_count+1):ye_int
        for l=(yc_int-yc_count+1):yc_int
          prem=min([mfye(k) mfyc(l)]);
          invnum=invnum+inverrules(k,l)*invbase*(prem-(prem)^2/2);
          invden=invden+invbase*(prem-(prem)^2/2);
        end
    end

% Next we compute the output of the fuzzy inverse model.
% If you want to let gp=0 to test the fuzzy controller by itself
% then you will have invden=0 and you will not be able to compute p.
% To make it possible to let gp=0 we put in the following
% if-then rule.

if gp==0
p=0;
else
p=invnum/invden;               % Crisp output of inverse model
if abs(p)<.05, p=0; end     % robustification term

end

% Next we modify the centers of ouput membership functions
% associated with the rules that were on d steps ago
% The indexing sheme is similar to the one used in the
% computation of the outputs of the fuzzy controller and
% fuzzy inverse model.

    for k=(meme_int(d)-meme_count(d)+1):meme_int(d)
        for l=(memc_int(d)-memc_count(d)+1):memc_int(d)

          fuzzyrules(k,l)=fuzzyrules(k,l)+p;
        end
    end

% Next, the Runge-Kutta equations to find the next state.

    time(index)=t;
    F=A*x+B*u(index);
    k1=step*F;
    xnew=x+k1/2;
    F=A*xnew+B*u(index);
    k2=step*F;
    xnew=x+k2/2;
    F=A*xnew+B*u(index);
    k3=step*F;
    xnew=x+k3;
    F=A*xnew+B*u(index);
    k4=step*F;
    x=x+(1/6)*(k1+2*k2+2*k3+k4); % Calculated next state

t=t+step;              % Increments time
index=index+1;         % Increments the indexing term so that
                    % index=1 corresponds to time t=0.

end % This end statement goes with the first "while" statement
    % in the program

%
% Next, we provide plots of the input and output of the plant
% and the output of the reference model
%

subplot(211)
plot(time,y,'-',time,ym,'--')
xlabel('Time (sec)')
title('Output of plant (solid) and reference model (dashed)')
subplot(212)
plot(time,u)
xlabel('Time (sec)')
title('Output of fuzzy controller (input to the plant)')

 B170

以上是关于模糊控制器设计源码程序的主要内容,如果未能解决你的问题,请参考以下文章

在matlab中使用模糊编辑器实现模糊控制器的设计详解

Java毕业设计+现成产品 —>java ssm springboot女士电商平台10(源码+sql+论文可运行)登录注册商品浏览分类管理模糊查找轮播图热销商品购物车订单订单流程控制

基于simulink的模糊PID控制器设计与实现

模糊控制器基于simulink的模糊控制器设计

matlab m文件模糊控制器设计

Simulink教程案例2基于Simulink的模糊控制器设计与实现