模版匹配定位跟踪

Posted fpga&matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模版匹配定位跟踪相关的知识,希望对你有一定的参考价值。

%% Find Green Object
% This script reads in an image file and then attempts to find a green
% object in the image. It is designed to find one green ball and highlight
% that ball on the original image

% Copyright 2013 The MathWorks, Inc.

%% Housekeeping
clear all; close all; clc;

%% Step 1: Read image into MATLAB 
% First we read the specified image from the file and bring it into MATLAB
% as a variable. We also display the image to ensure it is correct.
greenBall1 = imread('greenBall1.jpg');
t = imtool(greenBall1);

%%
close(t);

%% Step 2: Identify Unique Characteristics of Object of Interest

%%
% Extract each color
% Next we using indexing to extract three 2D matrices from the 3D image
% data corresponding to the red, green, and blue components of the image.
r = greenBall1(:, :, 1);
g = greenBall1(:, :, 2);
b = greenBall1(:, :, 3);

%% 
% View different color planes
figure, colormap gray
subplot(2,2,1),imagesc(r)
subplot(2,2,2),imagesc(g)
subplot(2,2,3),imagesc(b)

%%
% Calculate Green
% Then we perform an arithmetic operation on the matrices as a whole to try
% to create one matrix that represents an intensity of green.
justGreen = g - r/2 - b/2;
colorPlanesPlot(r,g,b,justGreen);

%%
close all

%% Step 3: Isolate Object of Interest

%% 
% Threshold the image
% Now we can set a threshold to separate the parts of the image that we
% consider to be green from the rest.
bw = justGreen > 50;
figure;
imagesc(bw);
colormap(gray);

%%
% Remove small unwanted objects
% We can use special functions provided by the Image Processing toolbox to
% quickly perform common image processing tasks. Here we are using
% BWAREAOPEN to remove groups of pixels less than 30.
ball1 = bwareaopen(bw, 30);
figure;
imagesc(ball1);

%% Step 4: Find center of green object
% Now we are using REGIONPROPS to extract the centroid of the group of
% pixels representing the ball.
figure;
s  = regionprops(ball1, {'centroid','area'});
if isempty(s)
  error('No ball found!');
else
  [~, id] = max([s.Area]);
  hold on, plot(s(id).Centroid(1),s(id).Centroid(2),'wp','MarkerSize',20,'MarkerFaceColor','r'), hold off
  disp(['Center location is (',num2str(s(id).Centroid(1),4),', ',num2str(s(id).Centroid(2),4),')'])
end

%% Step 5: Verify estimated location
% Finally we will plot the center on the original image to clearly evaluate
% how well we have found the center.
figure;
imagesc(greenBall1);
hold on, plot(s(id).Centroid(1),s(id).Centroid(2),'wp','MarkerSize',20,'MarkerFaceColor','r'), hold off


 

 B168

以上是关于模版匹配定位跟踪的主要内容,如果未能解决你的问题,请参考以下文章

C++ OpenCV模版匹配

FPGA目标跟踪基于FPGA的帧差法和SAD匹配算法的目标跟踪实现

OpenCV2马拉松第13圈——模版匹配

通俗易懂理解ORBSLAM2跟踪模块

Laravel 实时定位跟踪?

国科大人工智能学院《计算机视觉》课 —运动视觉—视觉跟踪(目标跟踪视觉定位)