深度学习100例 | 第51天-目标检测算法(YOLOv5)

Posted K同学啊

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习100例 | 第51天-目标检测算法(YOLOv5)相关的知识,希望对你有一定的参考价值。

大家好,我是『K同学啊』!

拖了好久,终于要开始目标检测系列了。自己想过好几次,想尽快出几期目标检测算法的博客教程,但是一直苦于不知道如何写,才能让大家轻松快速高效的入门目标检测算法。这段时间终于有个一个比较靠谱的思路。我是这样计划的:
首先,带大家先将算法跑起来,不然都不知道在干嘛,纯理论的东西看着头都大了,然后,教大家将官方的数据集更换成我们自己的数据集,并完成模型的训练。其次,在我们代码可以运行的情况下,从整体上讲解算法的结构。最后,挑选代码中一些比较关键的点,进行详细讲解

一、前言

YOLO系列是目前最热门的目标检测算法,那就拿它“开刀”了。YOLO目前已经更新到了YOLOv5,由于YOLOv5太新了,目前TensorFlow2版本还未出来(网上存在一些tf版本的,但是大概率不靠谱,就不踩坑了),那就用PyTorch吧,反正PyTorch迟早也是要学的嘛。PyTorch与TensorFlow的区别如下&#x

以上是关于深度学习100例 | 第51天-目标检测算法(YOLOv5)的主要内容,如果未能解决你的问题,请参考以下文章

深度学习100例 | 第53天:用YOLOv5训练自己的数据集(超级详细完整版)

深度学习100例 | 第53天:用YOLOv5训练自己的数据集(超级详细完整版)

深度学习100例-卷积神经网络(VGG-16)猫狗识别 | 第21天

深度学习100例-卷积神经网络(VGG-16)猫狗识别 | 第21天

深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天

深度学习100例 | 第32天(GRU模型):利用算法生成小说(斗罗大陆版)