论文合集 | 大规模图上的高效GNN

Posted 人工智能博士

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了论文合集 | 大规模图上的高效GNN相关的知识,希望对你有一定的参考价值。

点上方人工智能算法与Python大数据获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

仅做学术分享,如有侵权,联系删除

转载于 :图与推荐

???? Awesome Efficient Graph Neural Networks

图神经网络在工业界应用非常受欢迎,这是一篇关于高效图神经网络大规模网络中图神经网络应用的精选论文列表。

链接:https://github.com/chaitjo/awesome-efficient-gnn

Efficient and Scalable GNN Architectures

  • [ICML 2019] Simplifying Graph Convolutional Networks. Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger.

  • [ICML 2020 Workshop] SIGN: Scalable Inception Graph Neural Networks. Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, Federico Monti.

  • [ICLR 2021 Workshop] Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions. Shyam A. Tailor, Felix L. Opolka, Pietro Liò, Nicholas D. Lane.

  • [ICLR 2021] On Graph Neural Networks versus Graph-Augmented MLPs. Lei Chen, Zhengdao Chen, Joan Bruna.

  • [ICML 2021] Training Graph Neural Networks with 1000 Layers. Guohao Li, Matthias Müller, Bernard Ghanem, Vladlen Koltun.

Source: Simplifying Graph Convolutional Networks

Neural Architecture Search for GNNs

  • [IJCAI 2020] GraphNAS: Graph Neural Architecture Search with Reinforcement Learning. Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, Yue Hu.

  • [AAAI 2021 Workshop] Probabilistic Dual Network Architecture Search on Graphs. Yiren Zhao, Duo Wang, Xitong Gao, Robert Mullins, Pietro Lio, Mateja Jamnik.

  • [IJCAI 2021] Automated Machine Learning on Graphs: A Survey. Ziwei Zhang, Xin Wang, Wenwu Zhu.

Source: Probabilistic Dual Network Architecture Search on Graphs

Large-scale Graphs and Sampling Techniques

  • [KDD 2019] Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh.

  • [ICLR 2020] GraphSAINT: Graph Sampling Based Inductive Learning Method. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor Prasanna.

  • [KDD 2020] Scaling Graph Neural Networks with Approximate PageRank. Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózemberczki, Michal Lukasik, Stephan Günnemann.

  • [ICML 2021] GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings. Matthias Fey, Jan E. Lenssen, Frank Weichert, Jure Leskovec.

  • [ICLR 2021] Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan.

Source: GraphSAINT: Graph Sampling Based Inductive Learning Method

Low Precision and Quantized GNNs

  • [EuroMLSys 2021] Learned Low Precision Graph Neural Networks. Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, Pietro Lio.

  • [ICLR 2021] Degree-Quant: Quantization-Aware Training for Graph Neural Networks. Shyam A. Tailor, Javier Fernandez-Marques, Nicholas D. Lane.

  • [CVPR 2021] Binary Graph Neural Networks. Mehdi Bahri, Gaétan Bahl, Stefanos Zafeiriou.

Source: Degree-Quant: Quantization-Aware Training for Graph Neural Networks

Knowledge Distillation for GNNs

  • [CVPR 2020] Distilling Knowledge from Graph Convolutional Networks. Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, Xinchao Wang.

  • [WWW 2021] Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework. Cheng Yang, Jiawei Liu, Chuan Shi.

Source: Distilling Knowledge from Graph Convolutional Networks

Hardware Acceleration of GNNs

  • [IPDPS 2019] Accurate, Efficient and Scalable Graph Embedding. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor Prasanna.

  • [IEEE TC 2020] EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks. Shengwen Liang, Ying Wang, Cheng Liu, Lei He, Huawei Li, Xiaowei Li.

  • [FPGA 2020] GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms. Hanqing Zeng, Viktor Prasanna.

  • [IEEE CAD 2021] Rubik: A Hierarchical Architecture for Efficient Graph Learning. Xiaobing Chen, Yuke Wang, Xinfeng Xie, Xing Hu, Abanti Basak, Ling Liang, Mingyu Yan, Lei Deng, Yufei Ding, Zidong Du, Yunji Chen, Yuan Xie.

  • [ACM Computing 2021] Computing Graph Neural Networks: A Survey from Algorithms to Accelerators. Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, Eduard Alarcón.

Source: Computing Graph Neural Networks: A Survey from Algorithms to Accelerators

Industrial Applications and Systems

  • [KDD 2018] Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec.

  • [VLDB 2019] AliGraph: A Comprehensive Graph Neural Network Platform. Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, Jingren Zhou.

  • [DeepMind Blog 2021] Traffic prediction with advanced Graph Neural Networks. Oliver Lange, Luis Perez.

Source: Graph Convolutional Neural Networks for Web-Scale Recommender Systems

---------♥---------

声明:本内容来源网络,版权属于原作者

图片来源网络,不代表本公众号立场。如有侵权,联系删除

AI博士私人微信,还有少量空位

如何画出漂亮的深度学习模型图?

如何画出漂亮的神经网络图?

一文读懂深度学习中的各种卷积

点个在看支持一下吧

以上是关于论文合集 | 大规模图上的高效GNN的主要内容,如果未能解决你的问题,请参考以下文章

音视频技术开发周刊 | 277

论文阅读GNN阅读笔记

论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks

“AI新贵”图神经网络算法及平台在阿里的大规模实践

AI:业余时间打比赛—挣它个小小目标—阿里安全×ICDM 2022大规模电商图上的风险商品检测比赛

2022大规模电商图上的风险商品检测