Halo2 学习笔记——背景资料

Posted mutourend

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Halo2 学习笔记——背景资料相关的知识,希望对你有一定的参考价值。

1. Fields

很多密码学协议中的基础元素为名为fields的algebraic structure。

Fields为sets of objects (通常为numbers),其具有two associated binary operators + + + × \\times ×,使得各种field axioms(公理) 成立。
实数 R \\mathbb{R} R为具有无数元素的field。

Halo使用的是有限域,具有有限数量的元素。有限域可分为:

  • F \\mathbb{F} F为有限域,则其包含 ∣ F ∣ = p k |\\mathbb{F}|=p^k F=pk个元素,其中整数 k ≥ 1 k\\geq 1 k1 p p p为素数。
  • 任意两个具有相同数量元素的有限域都是isomorphic的。特别地,所有的arithmetic in a prime field F p \\mathbb{F}_p Fp 是 isomorphic to addition and multiplication of integers modulo p p p,即in Z p \\mathbb{Z}_p Zp。这就是为什么我们经常把 p p p称为modulus。

定义field F q \\mathbb{F}_q Fq,其中 q = p k q=p^k q=pk,其中prime p p p称为其characteristic。当 k > 1 k>1 k>1时,field F q \\mathbb{F}_q Fq为a k k k-degree extension of the filed F p \\mathbb{F}_p Fp。(类比于,复数 C = R ( i ) \\mathbb{C}=\\mathbb{R}(i) C=R(i)为实数的extension。)

但是,在Halo中不使用extension fields。 F p \\mathbb{F}_p Fp是指a prime field,其具有prime p p p个元素,即 k = 1 k=1 k=1

重点知识为:

  • 在任意域中,都存在2个特殊的elements: 0 0 0 为additive identity; 1 1 1 为multiplicative identity。

参考资料

[1] Halo2 背景资料

以上是关于Halo2 学习笔记——背景资料的主要内容,如果未能解决你的问题,请参考以下文章

Halo2 学习笔记——背景资料之Cryptographic groups

Halo2 学习笔记——背景资料之PLONKish arithmetization

Halo2 学习笔记——背景资料之Polynomials

Halo2学习笔记——背景资料之Elliptic curves

Halo2学习笔记——基本概念

Halo2 学习笔记——Gadgets 之 SHA-256