MapReduceWordCount 案例实操
Posted ZSYL
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduceWordCount 案例实操相关的知识,希望对你有一定的参考价值。
WordCount 案例实操
1. 本地测试
1)需求
在给定的文本文件中统计输出每一个单词出现的总次数
(1)输入数据
ss ss
cls cls
jiao
banzhang
xue
hadoop
(2)期望输出数据
banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1
2)需求分析
按照 MapReduce 编程规范,分别编写 Mapper,Reducer,Driver。
需求:统计一堆文件中单词出现的个数(WordCount案例)
3)环境准备
(1)创建 maven 工程,MapReduceDemo
(2)在 pom.xml
文件中添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
(2)在项目的 src/main/resources
目录下,新建一个文件,命名为“log4j.properties
”,在文件中填入:
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
(3)创建包名:com.zs.mapreduce.wordcount
4)编写程序
(1)编写 Mapper 类
package com.zs.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; // 2.x 3.x,mapred:1.x
import java.io.IOException;
/**
* KEYIN,map阶段输入的key的类型:LongWritable
* VALUEIN,map阶段输入value类型:Text
* KEYOUT,map阶段输出的Key类型:Text
* VALUEOUT,map阶段输出的value类型:IntWritable
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
// 定义全局变量,节省资源
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// super.map(key, value, context);
// 1. 获取一行
String line = value.toString();
// 2. 切割
String[] words = line.split(" ");
// 3. 循环写出
for (String word : words) {
// 封装outK
outK.set(word);
// 写出
context.write(outK, outV);
}
}
}
(2)编写 Reducer 类
package com.zs.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* KEYIN,reduce:LongWritable
* VALUEIN,reduce阶段输入value类型:Text
* KEYOUT,reduce阶段输出的Key类型:Text
* VALUEOUT,reduce阶段输出的value类型:IntWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
// 累加
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
// 写出
context.write(key, outV);
}
}
(3)编写 Driver 驱动类
package com.zs.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1. 获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2. 设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3. 关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4. 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5. 设置最终输出kV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path("D:\\\\software\\\\hadoop\\\\input\\\\inputword"));
FileOutputFormat.setOutputPath(job, new Path("D:\\\\software\\\\hadoop\\\\output\\\\output1"));
// 7. 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
5)本地测试
(1)需要首先配置好 HADOOP_HOME 变量以及 Windows 运行依赖
(2)在 IDEA/Eclipse 上运行程序
2. 提交到集群测试
集群上测试
(1)用 maven 打 jar 包,需要添加的打包插件依赖
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意:如果工程上显示红叉。在项目上右键->maven->Reimport
刷新即可。
(2)将程序打成 jar 包
(3)修改不带依赖的 jar
包名称为 wc.jar
,并拷贝该 jar 包到 Hadoop 集群的/opt/module/hadoop-3.1.3
路径。
使用XShell传输到Linux就可!
(4)启动 Hadoop 集群
[zs@hadoop102 hadoop-3.1.3]sbin/start-dfs.sh
[zs@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
(5)执行 WordCount 程序
[zs@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.zs.mapreduce.wordcount.WordCountDriver /user/zs/input /user/zs/output
加油!
感谢!
努力!
以上是关于MapReduceWordCount 案例实操的主要内容,如果未能解决你的问题,请参考以下文章
大数据之Hadoop(MapReduce):CombineTextInputFormat案例实操