MapReduceWordCount 案例实操

Posted ZSYL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduceWordCount 案例实操相关的知识,希望对你有一定的参考价值。

1. 本地测试

1)需求

在给定的文本文件中统计输出每一个单词出现的总次数

(1)输入数据

ss ss
cls cls
jiao
banzhang
xue
hadoop

(2)期望输出数据

banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1

2)需求分析

按照 MapReduce 编程规范,分别编写 Mapper,Reducer,Driver。

需求:统计一堆文件中单词出现的个数(WordCount案例)


3)环境准备

(1)创建 maven 工程,MapReduceDemo

(2)在 pom.xml 文件中添加如下依赖

 <dependencies>
   <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>3.1.3</version>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
    </dependency>
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>1.7.30</version>
    </dependency>
</dependencies>

(2)在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”,在文件中填入:

log4j.rootLogger=INFO, stdout 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n 
log4j.appender.logfile=org.apache.log4j.FileAppender 
log4j.appender.logfile.File=target/spring.log 
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout 
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(3)创建包名:com.zs.mapreduce.wordcount

4)编写程序

(1)编写 Mapper 类

package com.zs.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;  // 2.x 3.x,mapred:1.x

import java.io.IOException;

/**
 * KEYIN,map阶段输入的key的类型:LongWritable
 * VALUEIN,map阶段输入value类型:Text
 * KEYOUT,map阶段输出的Key类型:Text
 * VALUEOUT,map阶段输出的value类型:IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

    // 定义全局变量,节省资源
    private Text outK = new Text();
    private IntWritable outV = new IntWritable(1);

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//        super.map(key, value, context);
        // 1. 获取一行
        String line = value.toString();

        // 2. 切割
        String[] words = line.split(" ");

        // 3. 循环写出
        for (String word : words) {
            // 封装outK
            outK.set(word);
            // 写出
            context.write(outK, outV);
        }
    }
}

(2)编写 Reducer 类

package com.zs.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * KEYIN,reduce:LongWritable
 * VALUEIN,reduce阶段输入value类型:Text
 * KEYOUT,reduce阶段输出的Key类型:Text
 * VALUEOUT,reduce阶段输出的value类型:IntWritable
 */
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum = 0;

        // 累加
        for (IntWritable value : values) {
            sum += value.get();
        }
        outV.set(sum);

        // 写出
        context.write(key, outV);
    }
}

(3)编写 Driver 驱动类

package com.zs.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        // 1. 获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2. 设置jar包路径
        job.setJarByClass(WordCountDriver.class);

        // 3. 关联mapper和reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4. 设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 5. 设置最终输出kV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 6.设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\\\software\\\\hadoop\\\\input\\\\inputword"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\\\software\\\\hadoop\\\\output\\\\output1"));

        // 7. 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

5)本地测试

(1)需要首先配置好 HADOOP_HOME 变量以及 Windows 运行依赖

(2)在 IDEA/Eclipse 上运行程序

2. 提交到集群测试

集群上测试

(1)用 maven 打 jar 包,需要添加的打包插件依赖

<build>
    <plugins>
        <plugin>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.6.1</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
            </configuration>
        </plugin>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

注意:如果工程上显示红叉。在项目上右键->maven->Reimport 刷新即可。

(2)将程序打成 jar 包


(3)修改不带依赖的 jar 包名称为 wc.jar,并拷贝该 jar 包到 Hadoop 集群的/opt/module/hadoop-3.1.3 路径。

使用XShell传输到Linux就可!

(4)启动 Hadoop 集群

[zs@hadoop102 hadoop-3.1.3]sbin/start-dfs.sh
[zs@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

(5)执行 WordCount 程序

[zs@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.zs.mapreduce.wordcount.WordCountDriver /user/zs/input /user/zs/output

加油!

感谢!

努力!

以上是关于MapReduceWordCount 案例实操的主要内容,如果未能解决你的问题,请参考以下文章

Python基础篇:面向对象案例实操

Python基础篇:面向对象案例实操

Python基础篇:面向对象案例实操

大数据之Hadoop(MapReduce):CombineTextInputFormat案例实操

大数据之Hadoop(MapReduce):WritableComparable排序案例实操(全排序)

大数据之Hadoop(MapReduce):GroupingComparator分组案例实操