更新囚生CYの备忘录(20230216~)

Posted 囚生CY

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了更新囚生CYの备忘录(20230216~)相关的知识,希望对你有一定的参考价值。

序言

阳历生日。今年因为年过得早的缘故,很多事情都相对提前了(比如情人节)。往年过生日的时候基本都还在家,所以一家子出去吃个饭也就罢了。今年承蒙凯爹厚爱,正好也有小半年没聚,他前天也刚正式拿到offer,于是狠狠地宰了他一顿哈哈(srds下个月他过生日还得还回去)。

难得跟人一逛老半天,从乳山四村到正大广场,吃完饭再回来,一路上交换见解与心得,从九点多一直到晚上六点多才走,凯爹的阅历让我受益颇多。我其实很羡慕凯爹这样的人,每一个能从二战走出来的都是勇士中的勇士,就是那种生活很有激情,并且目标明确,矢志不渝,这两个词我觉得是越来越难能可贵。

回来这些天除了泡实验室,每天还是至少会去遛五圈,前天浅浅地跑了5000米,其实也不是很吃力。说起来差不多停跑了有十天,相当致命,不过我发现因为这么多年来屡屡从低谷恢复训练,身体已经习惯了这种节奏,至少今年开始恢复的时候跑起来还是挺轻快的,虽然耐力明显很差,但也没有那么笨重。

其实心底一直有这样一个心结,到底


20230216

因果推断之遐想,今年NSFC的通告里着重强调了这个方向,严格上来说这是一个统计学范畴,但是他越来越受到ML以及DM领域的关注,原因在于数据中难免存在难以捕获的偏见。

最近一篇非常好的CasualLM: Causual Model Explanation Through Counterfactual Language Models,提出了一种基于反事实构造的反事实语言模型,可以修整数据中固有的偏见。

但是现阶段因果推断和NLP的结合的工作大多是基于现有的因果图做检验会调整,其实有一个很关键的核心问题是如何捕获混杂因子(在没有因果图的情况下),一些工作会介绍如何从复合变量中分离得到混杂变量以及调整变量,如http://www.meng-jiang.com/pubs/tee-aaai17/tee-aaai17-paper.pdfhttps://arxiv.org/abs/arXiv:2006.07040,但是这些工作也是建立在因果图已知,候选的变量已经给定的前提下得到的,一般的情况是只给你上下文语料,如何判断一个基于该语料的任务存在混杂因子。

其实在预训练数据是足够充分的条件下,我们应当认可模型预测的结果是无偏的。问题在于预训练数据总是不够充分的,所以我们需要构造反事实来使得它更为均衡。还有就是Pearl的因果推断理论框架是完全建立在因果图之上的,问题在于没有任何理论保证因果图的有效性,这在因果推断与NLP结合时确实是令人费解的事情,这就有点射箭画靶的意思,为了论证存在混杂,特意构建了一个能够导出混杂的因果图。

以上是关于更新囚生CYの备忘录(20230216~)的主要内容,如果未能解决你的问题,请参考以下文章

更新囚生CYの备忘录(20221121-)

更新囚生CYの备忘录(20221121-)

继续更新囚生CYの备忘录(20220906-)

完结囚生CYの备忘录(20220525-20220813)

完结囚生CYの备忘录(20220525-20220813)

连载囚生CYの备忘录(20220906-)