Tensorflow+keras解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor(代码
Posted Better Bench
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow+keras解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor(代码相关的知识,希望对你有一定的参考价值。
1 引言
环境
Python 3.6
tensorflow 2.0
在使用以下代码时,在gen_imgs = self.generator.predict([noise, sampled_labels])这行代码报错cuDNN launch failure : input shape ([32,2,8,8])[[{{node sequential_1/batch_normalization_2/cond/else/_1/FusedBatchNormV3}}]]
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
def train(self, epochs, batch_size=128, sample_interval=50):
# Load the dataset
(X_train, y_train), (_, _) = mnist.load_data()
# Configure inputs
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# The labels of the digits that the generator tries to create an
# image representation of
sampled_labels = np.random.randint(0, 10, (batch_size, 1))
#报错的代码
gen_imgs = self.generator.predict([noise, sampled_labels])
# Image labels. 0-9
img_labels = y_train[idx]
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, sampled_labels])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator
g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.save_model()
self.sample_images(epoch)
2 解决办法
使用以下代码
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
以上是关于Tensorflow+keras解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor(代码的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow+keras解决cuDNN launch failure : input shape ([32,2,8,8]) [[{{node sequential_1/batch_nor(代码
使用 GPU 和 CUDA、cuDNN、Anaconda、RTX 3060 Ti 运行 TensorFlow/Keras
安装keras tensorflow指定版本后需要安装指定版本的CUDA和cudnn,否则报错 ImportError: Could not find ‘cudart64_90.dll‘.
安装keras tensorflow指定版本后需要安装指定版本的CUDA和cudnn,否则报错 ImportError: Could not find ‘cudart64_90.dll‘.
Keras学习环境配置-GPU加速版(Ubuntu 16.04 + CUDA8.0 + cuDNN6.0 + Tensorflow)