Tensorflow+kerasKeras API两种训练GAN网络的方式

Posted Better Bench

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow+kerasKeras API两种训练GAN网络的方式相关的知识,希望对你有一定的参考价值。

1 第一种 train_on_batch

(1)简介
github:https://github.com/eriklindernoren/Keras-GAN/tree/master/cgan
运行一批样品的单次梯度更新。该方法搭配keras的sequential API使用。
其他网络结构参考Keras API三种搭建神经网络的方式及以mnist举例实现
(2)举例实现

from __future__ import print_function, division
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from tensorflow.keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import UpSampling2D, Conv2D
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import numpy as np
class CGAN():
    def __init__(self):
        # Input shape
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.num_classes = 10
        self.latent_dim = 100
        optimizer = Adam(0.0002, 0.5)
        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss=['binary_crossentropy'],
            optimizer=optimizer,
            metrics=['accuracy'])
        # Build the generator
        self.generator = self.build_generator()
        # The generator takes noise and the target label as input
        # and generates the corresponding digit of that label
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,))
        img = self.generator([noise, label])
        # For the combined model we will only train the generator
        self.discriminator.trainable = False
        # The discriminator takes generated image as input and determines validity
        # and the label of that image
        valid = self.discriminator([img, label])
        # The combined model  (stacked generator and discriminator)
        # Trains generator to fool discriminator
        self.combined = Model([noise, label], valid)
        self.combined.compile(loss=['binary_crossentropy'],
            optimizer=optimizer)
    def build_generator(self):
        model = Sequential()
        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))
        model.summary()
        noise = Input(shape=(self.latent_dim,))
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
        model_input = multiply([noise, label_embedding])
        img = model(model_input)
        return Model([noise, label], img)
    def build_discriminator(self):
        model = Sequential()
        model.add(Dense(512, input_dim=np.prod(self.img_shape)))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()
        img = Input(shape=self.img_shape)
        label = Input(shape=(1,), dtype='int32')
        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
        flat_img = Flatten()(img)
        model_input = multiply([flat_img, label_embedding])
        validity = model(model_input)
        return Model([img, label], validity)
    def train(self, epochs, batch_size=128, sample_interval=50):
        # Load the dataset
        (X_train, y_train), (_, _) = mnist.load_data()
        # Configure input
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
        y_train = y_train.reshape(-1, 1)
        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
        for epoch in range(epochs):
            # ---------------------
            #  Train Discriminator
            # ---------------------
            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs, labels = X_train[idx], y_train[idx]
            # Sample noise as generator input
            noise = np.random.normal(0, 1, (batch_size, 100))
            # Generate a half batch of new images
            gen_imgs = self.generator.predict([noise, labels])
            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
            #train_on_batch返回值 为长度为2的列表, d_loss_real[0]为loss, d_loss_real[1]为accuracy
            d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
            # ---------------------
            #  Train Generator
            # ---------------------
            # Condition on labels
            sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
            # Train the generator
            g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)
    def sample_images(self, epoch):
        r, c = 2, 5
        noise = np.random.normal(0, 1, (r * c, 100))
        sampled_labels = np.arange(0, 10).reshape(-1, 1)
        gen_imgs = self.generator.predict([noise, sampled_labels])
        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
                axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/%d.png" % epoch)
        plt.close()
if __name__ == '__main__':
    cgan = CGAN()
    cgan.train(epochs=1000, batch_size=32, sample_interval=200)

2 第二种 tf.GradientTape()

参考:https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit
(1)搭建网络

from tensorflow.keras import layers
# Create the discriminator
discriminator = keras.Sequential(
    [
        keras.Input(shape=(28, 28, 1)),
        layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.GlobalMaxPooling2D(),
        layers.Dense(1),
    ],
    name="discriminator",
)
# Create the generator
latent_dim = 128
generator = keras.Sequential(
    [
        keras.Input(shape=(latent_dim,)),
        # We want to generate 128 coefficients to reshape into a 7x7x128 map
        layers.Dense(7 * 7 * 128),
        layers.LeakyReLU(alpha=0.2),
        layers.Reshape((7, 7, 128)),
        layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
        layers.LeakyReLU(alpha=0.2),
        layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
    ],
    name="generator",
)
#训练网络
class GAN(keras.Model):
    def __init__(self, discriminator, generator, latent_dim):
        super(GAN, self).__init__()
        self.discriminator = discriminator
        self.generator = generator
        self.latent_dim = latent_dim
    def compile(self, d_optimizer, g_optimizer, loss_fn):
        super(GAN, self).compile()
        self.d_optimizer = d_optimizer
        self.g_optimizer = g_optimizer
        self.loss_fn = loss_fn
    def train_step(self, real_images):
        if isinstance(real_images, tuple):
            real_images = real_images[0]
        # Sample random points in the latent space
        batch_size = tf.shape(real_images)[0]
        random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
        # Decode them to fake images
        generated_images = self.generator(random_latent_vectors)
        # Combine them with real images
        combined_images = tf.concat([generated_images, real_images], axis=0)
        # Assemble labels discriminating real from fake images
        labels = tf.concat(
            [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0
        )
        # Add random noise to the labels - important trick!
        labels += 0.05 * tf.random.uniform(tf.shape(labels))
        # Train the discriminator
        with tf.GradientTape() as tape:
            predictions = self.discriminator(combined_images)
            d_loss = self.loss_fn(labels, predictions)
        grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
        self.d_optimizer.apply_gradients(
            zip(grads, self.discriminator.trainable_weights)
        )
        # Sample random points in the latent space
        random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
        # Assemble labels that say "all real images"
        misleading_labels = tf.zeros((batch_size, 1))
        # Train the generator (note that we should *not* update the weights
        # of the discriminator)!
        with tf.GradientTape() as tape:
            predictions = self.discriminator(self.generator(random_latent_vectors))
            g_loss = self.loss_fn(misleading_labels, predictions)
        grads = tape.gradient(g_loss, self.generator.trainable_weights)
        self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))
        return {"d_loss": d_loss, "g_loss": g_loss}
#测试网络
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
dataset = tf.data.Dataset.from_tensor_slices(all_digits)
dataset = dataset.shuffle(buffer_size=1024).batch(batch_size)
gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
    loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)

以上是关于Tensorflow+kerasKeras API两种训练GAN网络的方式的主要内容,如果未能解决你的问题,请参考以下文章

Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现

Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现

Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量

Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量

Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例

Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例