CS224W摘要01.Introduction; Machine Learning for Graphs
Posted oldmao_2000
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CS224W摘要01.Introduction; Machine Learning for Graphs相关的知识,希望对你有一定的参考价值。
CS224W: Machine Learning with Graphs
Jure Leskovec
2021版
Why Graphs?
Graphs are a general language for describing and analyzing entities with relations/interactions
常见的图数据:
Event Graphs
Computer Networks
Disease Pathways
Food Webs(食物链)
Particle Networks
Underground Networks
Social Networks
Economic Networks
Communication Networks
Citation Networks
Internet
Networks of Neurons
Knowledge Graphs
Gene regulatory network基因调控网络
Scene Graphs从真实图片中分割对象并形成网络
Molecules
Code Graphs
3D Shapes
网络和图的概念上没有很明显的区分
这里给出为什么要使用图模型进行表征:
Complex domains have a rich relational structure, which can be represented as a relational graph.
By explicitly modeling relationships we achieve better performance!
Applications of Graph ML
类型 | 任务 | 实例 |
---|---|---|
Node level | Node classification: Predict a property of a node | Categorize online users / items |
Edge-level | Link prediction: Predict whether there are missing links between two nodes | Knowledge graph completion |
Community(subgraph) level | Clustering: Detect if nodes form a community | Social circle detection |
Graph-level | Graph classification: Categorize different graphs | Molecule property prediction |
其他 | Graph generation、Graph evolution | Drug discovery、Physical simulation |
Choice of Graph Representation
Component | Name | Notation |
---|---|---|
Objects | nodes, vertices | N N N |
Interactions | links, edges | E E E |
System | network, graph | G ( N , E ) G(N,E) G(N,E) |
选择图表征的原则:
类型 | 特点 |
---|---|
professional network | connect individuals that work with each other |
sexual networks | connect those that have a sexual relationship |
citation network | connect scientific papers that cite each other (有向) |
下图来自:https://www.researchgate.net/figure/A-Figure-from-Bearman-Moody-and-Stovel-47-based-the-Add-Health-Data-Set-A-Link_fig2_331307250,是sexual networks,蓝色男性,粉色女性。
除此之外还可以根据图的类型来选择相应的图,有向或无向,带权或不带权,联通或者不联通等。
以上是关于CS224W摘要01.Introduction; Machine Learning for Graphs的主要内容,如果未能解决你的问题,请参考以下文章
CS224W摘要10.Knowledge Graph Embeddings