Linux input 子系统详解
Posted 一口Linux
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux input 子系统详解相关的知识,希望对你有一定的参考价值。
1. 模块概述
1.1.相关资料和代码研究
drivers/input/
include/uapi/linux/input-event-codes.h
2. 模块功能
linux核心的输入框架
3. 模块学习
3.1.概述
Linux输入设备种类繁杂,常见的包括触摸屏、键盘、鼠标、摇杆等;这些输入设备属于字符设备,而linux将这些设备的共同特性抽象出来,Linux input 子系统就产生了。
3.2.软件架构
输入子系统是由设备驱动层(input driver)、输入核心层(input core)、输入事件处理层(input event handle)组成,具体架构如图4.1所示:
- (1)input设备驱动层:负责具体的硬件设备,将底层的硬件输入转化为统一的事件形式,向input核心层和汇报;
*(2)input核心层:连接input设备驱动层与input事件处理层,向下提供驱动层的接口,向上提供事件处理层的接口;
*(3)input事件处理层:为不同硬件类型提供了用户访问以及处理接口,将硬件驱动层传来的事件报告给用户程序。
在input子系统中,每个事件的发生都使用事件(type)->子事件(code)->值(value)
所有的输入设备的主设备号都是13,input-core通过次设备来将输入设备进行分类,如0-31是游戏杆,32-63是鼠标(对应Mouse Handler)、64-95是事件设备(如触摸屏,对应Event Handler)。
Linux输入子系统支持的数据类型
时间类型 | 编码 | 含义 |
---|---|---|
EV_SYN | 0x00 | 同步事件 |
EV_KEY | 0x01 | 按键事件(鼠标,键盘等) |
EV_REL | 0x02 | 相对坐标(如:鼠标移动,报告相对最后一次位置的偏移) |
EV_ABS | 0x03 | 绝对坐标(如:触摸屏或操作杆,报告绝对的坐标位置) |
EV_MSC | 0x04 | 其它 |
EV_SW | 0x05 | 开关 |
EV_LED | 0x11 | 按键/设备灯 |
EV_SND | 0x12 | 声音/警报 |
EV_REP | 0x14 | 重复 |
EV_FF | 0x15 | 力反馈 |
EV_PWR | 0x16 | 电源 |
EV_FF_STATUS | 0x17 | 力反馈状态 |
EV_MAX | 0x1f | 事件类型最大个数和提供位掩码支持 |
定义的按键值
#define KEY_RESERVED 0
#define KEY_ESC 1
#define KEY_1 2
#define KEY_2 3
#define KEY_3 4
#define KEY_4 5
#define KEY_5 6
#define KEY_6 7
#define KEY_7 8
#define KEY_8 9
#define KEY_9 10
#define KEY_0 11
...
3.3.数据结构
三个数据结构input_dev,input_handle,input_handler之间的关系如图4.2、4.3所示
input_dev:是硬件驱动层,代表一个input设备。
input_handler:是事件处理层,代表一个事件处理器。
input_handle:属于核心层,代表一个配对的input设备与input事件处理器。
input_dev 通过全局的input_dev_list链接在一起,设备注册的时候完成这个操作。
input_handler 通过全局的input_handler_list链接在一起。事件处理器注册的时候实现了这个操作(事件处理器一般内核自带,不需要我们来写)
input_hande 没有一个全局的链表,它注册的时候将自己分别挂在了input_dev 和 input_handler 的h_list上了。通过input_dev 和input_handler就可以找到input_handle在设备注册和事件处理器,注册的时候都要进行配对工作,配对后就会实现链接。通过input_handle也可以找到input_dev和input_handler。
我们可以看到,input_device和input_handler中都有一个h_list,而input_handle拥有指向input_dev和input_handler的指针,也就是说input_handle是用来关联input_dev和input_handler的。
那么为什么一个input_device和input_handler中拥有的是h_list而不是一个handle呢?
因为一个device可能对应多个handler,而一个handler也不能只处理一个device,比如说一个鼠标,它可以对应even handler,也可以对应mouse handler,因此当其注册时与系统中的handler进行匹配,就有可能产生两个实例,一个是evdev,另一个是mousedev,而任何一个实例中都只有一个handle。
至于以何种方式来传递事件,就由用户程序打开哪个实例来决定。后面一个情况很容易理解,一个事件驱动不能只为一个甚至一种设备服务,系统中可能有多种设备都能使用这类handler,比如event handler就可以匹配所有的设备。在input子系统中,有8种事件驱动,每种事件驱动最多可以对应32个设备,因此dev实例总数最多可以达到256个
3.3.1. Input_dev
输入设备
/* include/linux/input.h */
struct input_dev {
const char *name; /* 设备名称 */
const char *phys; /* 设备在系统中的路径 */
const char *uniq; /* 设备唯一id */
struct input_id id; /* input设备id号 */
unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; /* 设备支持的事件类型,主要有EV_SYNC,EV_KEY,EV_KEY,EV_REL,EV_ABS等*/
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; /* 按键所对应的位图 */
unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; /* 相对坐标对应位图 */
unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; /* 决定左边对应位图 */
unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; /* 支持其他事件 */
unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; /* 支持led事件 */
unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; /* 支持声音事件 */
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; /* 支持受力事件 */
unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; /* 支持开关事件 */
unsigned int hint_events_per_packet; /* 平均事件数*/
unsigned int keycodemax; /* 支持最大按键数 */
unsigned int keycodesize; /* 每个键值字节数 */
void *keycode; /* 存储按键值的数组的首地址 */
int (*setkeycode)(struct input_dev *dev,
const struct input_keymap_entry *ke, unsigned int *old_keycode);
int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke);
struct ff_device *ff; /* 设备关联的反馈结构,如果设备支持 */
unsigned int repeat_key; /* 最近一次按键值,用于连击 */
struct timer_list timer; /* 自动连击计时器 */
int rep[REP_CNT]; /* 自动连击参数 */
struct input_mt *mt; /* 多点触控区域 */
struct input_absinfo *absinfo; /* 存放绝对值坐标的相关参数数组 */
unsigned long key[BITS_TO_LONGS(KEY_CNT)]; /* 反应设备当前的案件状态 */
unsigned long led[BITS_TO_LONGS(LED_CNT)]; /* 反应设备当前的led状态 */
unsigned long snd[BITS_TO_LONGS(SND_CNT)]; /* 反应设备当前的声音状态 */
unsigned long sw[BITS_TO_LONGS(SW_CNT)]; /* 反应设备当前的开关状态 */
int (*open)(struct input_dev *dev); /* 第一次打开设备时调用,初始化设备用 */
void (*close)(struct input_dev *dev); /* 最后一个应用程序释放设备事件,关闭设备 */
int (*flush)(struct input_dev *dev, struct file *file); /* 用于处理传递设备的事件 */
int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); /* 事件处理函数,主要是接收用户下发的命令,如点亮led */
struct input_handle __rcu *grab; /* 当前占有设备的input_handle */
spinlock_t event_lock; /* 事件锁 */
struct mutex mutex; /* 互斥体 */
unsigned int users; /* 打开该设备的用户数量(input_handle) */
bool going_away; /* 标记正在销毁的设备 */
struct device dev; /* 一般设备 */
struct list_head h_list; /* 设备所支持的input handle */
struct list_head node; /* 用于将此input_dev连接到input_dev_list */
unsigned int num_vals; /* 当前帧中排队的值数 */
unsigned int max_vals; /* 队列最大的帧数*/
struct input_value *vals; /* 当前帧中排队的数组*/
bool devres_managed; /* 表示设备被devres 框架管理,不需要明确取消和释放*/
};
3.3.2. Input_handler
处理具体的输入事件的具体函数
/* include/linux/input.h */
struct input_handler {
void *private; /* 存放handle数据 */
void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
void (*events)(struct input_handle *handle,
const struct input_value *vals, unsigned int count);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
bool legacy_minors;
int minor;
const char *name; /* 名字 */
const struct input_device_id *id_table; /* input_dev匹配用的id */
struct list_head h_list; /* 用于链接和handler相关的handle,input_dev与input_handler配对之后就会生成一个input_handle结构 */
struct list_head node; /* 用于将该handler链入input_handler_list,链接所有注册到内核的所有注册到内核的事件处理器 */
};
3.3.3. Input_handle
连接输入设备和处理函数
/* include/linux/input.h */
struct input_handle {
void *private; /* 数据指针 */
int open; /* 打开标志,每个input_handle 打开后才能操作 */
const char *name; /* 设备名称 */
struct input_dev *dev; /* 指向所属的input_dev */
struct input_handler *handler; /* 指向所属的input_handler */
struct list_head d_node; /* 用于链入所指向的input_dev的handle链表 */
struct list_head h_node; /* 用于链入所指向的input_handler的handle链表 */
};
3.3.4. Evdev
字符设备事件
/* drivers/input/evdev.c */
struct evdev {
int open; /* 设备被打开的计数 */
struct input_handle handle; /* 关联的input_handle */
wait_queue_head_t wait; /* 等待队列,当前进程读取设备,没有事件产生时,
进程就会sleep */
struct evdev_client __rcu *grab; /* event响应 */
struct list_head client_list; /* evdev_client链表,说明evdev设备可以处理多个 evdev _client,可以有多个进程访问evdev设备 */
spinlock_t client_lock;
struct mutex mutex;
struct device dev;
struct cdev cdev;
bool exist; /* 设备存在判断 */
};
3.3.5. evdev_client
字符设备事件响应
/* drivers/input/evdev.c */
struct evdev_client {
unsigned int head; /* 动态索引,每加入一个event到buffer中,head++ */
unsigned int tail; /* 动态索引,每取出一个buffer中到event,tail++ */
unsigned int packet_head; /* 数据包头部 */
spinlock_t buffer_lock;
struct fasync_struct *fasync; /* 异步通知函数 */
struct evdev *evdev;
struct list_head node; /* evdev_client链表项 */
int clkid;
unsigned int bufsize;
struct input_event buffer[]; /* 用来存放input_dev事件缓冲区 */
};
3.3.6. Evdev_handler
evdev_handler事件处理函数
/* drivers/input/input.c */
static struct input_handler evdev_handler = {
.event = evdev_event, /* 事件处理函数, */
.events = evdev_events, /* 事件处理函数, */
.connect = evdev_connect, /* 连接函数,将事件处理和输入设备联系起来 */
.disconnect = evdev_disconnect, /* 断开该链接 */
.legacy_minors = true,
.minor = EVDEV_MINOR_BASE,
.name = "evdev", /* handler名称 */
.id_table = evdev_ids, /* 断开该链接 */
};
3.3.7. input_event
标准按键编码信息
/* drivers/input/evdev.c */
struct input_event {
struct timeval time; /* 事件发生的时间 */
__u16 type; /* 事件类型 */
__u16 code; /* 事件码 */
__s32 value; /* 事件值 */
};
3.3.8. input_id
和input输入设备相关的id信息
/* include/uapi/linux/input.h */
struct input_id {
__u16 bustype; /* 总线类型 */
__u16 vendor; /* 生产厂商 */
__u16 product; /* 产品类型 */
__u16 version; /* 版本 */
};
3.3.9. input_device_id
/* include/uapi/linux/input.h */
struct input_device_id {
kernel_ulong_t flags;
__u16 bustype; /* 总线类型 */
__u16 vendor; /* 生产厂商 */
__u16 product; /* 产品类型 */
__u16 version; /* 版本 */
kernel_ulong_t evbit[INPUT_DEVICE_ID_EV_MAX / BITS_PER_LONG + 1];
kernel_ulong_t keybit[INPUT_DEVICE_ID_KEY_MAX / BITS_PER_LONG + 1];
kernel_ulong_t relbit[INPUT_DEVICE_ID_REL_MAX / BITS_PER_LONG + 1];
kernel_ulong_t absbit[INPUT_DEVICE_ID_ABS_MAX / BITS_PER_LONG + 1];
kernel_ulong_t mscbit[INPUT_DEVICE_ID_MSC_MAX / BITS_PER_LONG + 1];
kernel_ulong_t ledbit[INPUT_DEVICE_ID_LED_MAX / BITS_PER_LONG + 1];
kernel_ulong_t sndbit[INPUT_DEVICE_ID_SND_MAX / BITS_PER_LONG + 1];
kernel_ulong_t ffbit[INPUT_DEVICE_ID_FF_MAX / BITS_PER_LONG + 1];
kernel_ulong_t swbit[INPUT_DEVICE_ID_SW_MAX / BITS_PER_LONG + 1];
kernel_ulong_t propbit[INPUT_DEVICE_ID_PROP_MAX / BITS_PER_LONG + 1];
kernel_ulong_t driver_info;
};
3.3.10. input_even
输入事件的传递已input_event为基本单位
struct input_event {
struct timeval time; //时间戳
__u16 type; //事件总类型
__u16 code; //事件子类型
__s32 value; //事件值
};
3.4. Linux input 子系统关键流程
核心层,执行的时候会注册设备号,然后在handler层注册input_handler,也就是evdev_handler会注册到核心层维护的链表中。
然后进行硬件初始化获取数据,而且需要将设备注册到链表中。注册进来就就会遍历input_handler_list链表,找到对应的handler,匹配成功后会调用connect方法。connect分配evdev,evdev就记录了input_handler和input_device之间的关系,同时创建设备节点,还会注册cdev从而可以让应用调用。
当应用程序调用open,read等接口的时候就会调用input_handler层实现的xxx_open,那么open就会分配好evdev_client,最终在input_dev层上报数据的时候会自动调用input_handler,input_handler就会调用events填充上报的数据到缓冲区client,此时如果没有唤醒队列的话应用read的时候会阻塞,而唤醒队列后最终使用copy_to_user来给应用数据。
设备驱动程序上报事件的函数有:
input_report_key //上报按键事件
input_report_rel //上报相对坐标事件
input_report_abs //上报绝对坐标事件
input_report_ff_status
input_report_switch
input_sync //上报完成后需要调用这些函数来通知系统处理完整事件
input_mt_sync //上报完成后需要调用这些函数来通知系统处理完整事件
这些函数其实是input_event函数的封装,调用的都是input_event函数,在输入设备驱动(input_dev)中,一般通过轮询或中断方式获取输入事件的原始值(raw value),经过处理后再使用input_event()函数上报;核心层将事件数据(type、code、value)打包、分发至事件处理器;调用关系为:input_event->input_handle_event->input_pass_values,这一函数都在input.c实现。
3.4.1. Input 设备注册流程
输入设备注册过程如图4.3所示
3.4.2. 连接设备流程
连接设备流程如图4.4所示
3.4.3. 事件上报流程
事件上报流程如图4.5所示
3.4.4. 数据读取流程
数据读取流程如图4.6所示
3.5.关键函数解析
3.5.1. input_init
input子系统使用subsys_initcall宏修饰input_init()函数在内核启动阶段被调用。input_init()函数在内核启动阶段被调用。input_init()函数的主要工作是:在sys文件系统下创建一个设备类(/sys/class/input),调用register_chrdev()函数注册input设备。
/* drivers/input/input.c */
static int __init input_init(void)
{
int err;
err = class_register(&input_class); /* 注册类,放在sys/class下 */
if (err) {
pr_err("unable to register input_dev class\\n");
return err;
}
err = input_proc_init(); /* 在proc目录下建立相关目录 */
if (err)
goto fail1;
err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
INPUT_MAX_CHAR_DEVICES, "input"); /* 注册字符设备编号,INPUT_MAJOR 永远是13 */
if (err) {
pr_err("unable to register char major %d", INPUT_MAJOR);
goto fail2;
}
return 0;
fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}
3.5.2. Input_register_device
/* drivers/input/input.c */
int input_register_device(struct input_dev *dev)
{
struct atomic_t input_no = ATOMIC_INIT(0);
struct input_devres *devres = NULL;
struct input_handler *handler;
unsigned int packet_size;
const char *path;
int error;
if (dev->devres_managed) {
devres = devres_alloc(devm_input_device_unregister,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return -ENOMEM;
devres->input = dev;
}
/* 每个input_device都会产生EV_SYN/SYN_REPORT时间,所以就放在一起设置 */
__set_bit(EV_SYN, dev->evbit);
/* KEY_RESERVED is not supposed to be transmitted to userspace. */
__clear_bit(KEY_RESERVED, dev->keybit);
/* 没有设置的位,确保被清零 */
input_cleanse_bitmasks(dev);
/* */
packet_size = input_estimate_events_per_packet(dev);
if (dev->hint_events_per_packet < packet_size)
dev->hint_events_per_packet = packet_size;
dev->max_vals = dev->hint_events_per_packet + 2;
dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
if (!dev->vals) {
error = -ENOMEM;
goto err_devres_free;
}
/* 如果延时周期是程序预先设定的,那么是由驱动自动处理,主要是为了处理重复按键 */
init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
}
if (!dev->getkeycode) /* 获取按键值 */
dev->getkeycode = input_default_getkeycode;
if (!dev->setkeycode) /* 设置按键值 */
dev->setkeycode = input_default_setkeycode;
error = device_add(&dev->dev); /* 将dev注册到sys */
if 以上是关于Linux input 子系统详解的主要内容,如果未能解决你的问题,请参考以下文章
Linux 输入设备调试详解(零基础开发)Rotary_Encoder旋转编码器模块(EC11)通用GPIO为例 挂载input输入子系统