Hive手册

Posted 爱是与世界平行

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive手册相关的知识,希望对你有一定的参考价值。

文章目录

1 Hive基本概念

1.1 Hive简介

1.1.1 什么是Hive

Hive由Facebook实现并开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据映射为一张数据库表,并提供**HQL(Hive SQL)**查询功能,底层数据是存储在HDFS上。Hive的本质是将SQL语句转换为 MapReduce任务运行,使不熟悉MapReduce的用户很方便地利用HQL处理和计算HDFS上的结构化的数据,适用于离线的批量数据计算。

主要用途:用来做离线数据分析,比直接用 MapReduce 开发效率更高,Hive依赖于HDFS存储数据,Hive将HQL转换成MapReduce执行。

所以说Hive是基于hadoop的一个数据仓库工具,实质就是一款基于HDFS的MapReduce计算框架

1.1.2 为什么使用Hive

直接使用MapReduce所面临的问题:

  • 人员学习成本太高

  • 项目周期要求太短

  • MapReduce实现复杂查询逻辑开发难度太大

为什么要使用Hive:

  • 更友好的接口:操作接口采用类SQL的语法,提供快速开发的能力

  • 更低的学习成本:避免了写MapReduce,减少开发人员的学习成本

  • 更好的扩展性:可自由扩展集群规模而无需重启服务,还支持用户自定义函数

1.1.3 Hive特点

优点:

1、可扩展性,横向扩展,Hive可以自由的扩展集群的规模,一般情况下不需要重启服务

横向扩展:通过分担压力的方式扩展集群的规模

纵向扩展:一台服务器cpu i7-6700k 4核心8线程,8核心16线程,内存64G => 128G

2、延展性,Hive支持自定义函数,用户可以根据自己的需求来实现自己的函数

3、良好的容错性,可以保障即使有节点出现问题,SQL语句仍可完成执行

缺点:

1、hive不支持记录级别的增删改操作,但是用户可以通过查询生成新表或者将查询结果导入到文件中(当前选择的hive-1.2.1的版本支持记录级别的插入操作)

2、Hive的查询延时很严重,因为MapReduce Job的启动过程消耗很长时间,所以不能用在交互查询系统中。

3、hive不支持事务(因为没有增删改,所以主要用来做OLAP(联机分析处理),而不是OLTP(联机事务处理),这就是数据处理的两大级别)。

1.2 Hive的体系架构

基本组成

用户接口:

  • CLI,Shell终端命令行,最常用(学习,调试,生产)

  • JDBC/ODBC,是Hive的基于JDBC操作提供的客户端,用户(开发员,运维人员)通过这连接至Hive server

  • Web UI,通过浏览器访问Hive

元数据存储:

  • 元数据,通俗的讲,就是存储在Hive中的数据的描述信息。

Hive中的元数据通常包括:表的名字,表的列和分区及其属性,表的属性(内部表和外部表),表的数据所在目录

Metastore默认存在自带的Derby数据库中。缺点就是不适合多用户操作,并且数据存储目录不固定。数据库跟着Hive走,极度不方便管理

解决方案:通常存我们自己创建的mysql库(本地远程

解释器,编译器,优化器,执行器

这四大组件完成HQL查询语句从词法分析,语法分析,编译,优化,以及生成查询计划的生成。生成的查询计划存储在HDFS中,并随后由MapReduce调用执行

执行流程

HiveQL通过命令行或者客户端提交,经过Compiler编译器,运用Metastore中的元数据进行类型检测和语法分析,生成一个逻辑方案(logical plan),然后通过的优化处理,产生一个MapReduce任务。

1.3 Hive和RDBMS的对比

对比项HiveRDBMS
查询语言HQLSQL
数据存储HDFSRaw Device or Local FS
执行器MapReduceExecutor
数据插入支持批量导入/单条插入支持单条或者批量导入
数据操作覆盖追加行级更新删除
处理数据规模
执行延迟
分区支持支持
索引0.8版本之后加入简单索支持复杂的索引
扩展性高(好)有限(差)
数据加载模式读时模式(快)写时模式(慢)
应用场景海量数据查询实时查询

总结:Hive具有SQL数据库的外表,但应用场景完全不同,Hive只适合用来做海量离线数据统计分析,也就是数据仓库

1.4 Hive的数据存储

1、Hive的存储结构包括数据库、表、视图、分区和表数据等。数据库,表,分区等等都对应HDFS上的一个目录。表数据对应HDFS对应目录下的文件。

2、Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持TextFile,SequenceFile,RCFILE或者自定义格式等)

3、 只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据

4、Hive中包含以下数据模型:

database:在hdfs中表现为$hive.metastore.warehouse.dir目录下一个文件夹

table:在hdfs中表现所属database目录下一个文件夹

external table:与table类似,不过其数据存放位置可以指定任意HDFS目录路径

partition:在hdfs中表现为table目录下的子目录

bucket:在hdfs中表现为同一个表目录或者分区目录下根据hash散列之后的多个文件

view:与传统数据库类似,只读,基于基本表创建

5、Hive的元数据存储在RDBMS中,除元数据外的其它所有数据都基于HDFS存储。默认情况下,Hive 元数据保存在内嵌的 Derby 数据库中,只能允许一个会话连接,只适合简单的测试。实际生产环境中不适用,为了支持多用户会话,则需要一个独立的元数据库,使用 MySQL 作为元数据库,Hive 内部对 MySQL 提供了很好的支持。

6、Hive中的表分为内部表外部表分区表Bucket。

2 Hive基本使用

1、 创建库:create database mydb;

2、 查看库:show databases;

3、 切换数据库:use mydb;

4、 创建表:create table t_user(id string, name string)

或create table t_user2 (id string, name string) row format delimited fields terminated by ‘,’;

5、 插入数据:insert into table t_user values(‘001’,‘mazhonghua’);

6、 查询数据:select * from t_user;

7、 导入数据(后面会说动静态分区):

a) 导入HDFS数据: load data inpath ‘/mingxing.txt’ into table t_user1;

b) 导入本地数据:load data local inpath ‘/root/mingxing.txt’ into table t_user1;

小技能补充:

1、 进入到用户的主目录,使用命令cat /home/hadoop/.hivehistory可以查看到hive执行的历史命令

2、 执行查询时若想显示表头信息时,请执行命令:

Hive> set hive.cli.print.header=true;

3、 hive的执行日志的存储目录在 j a v a . i o . t m p d i r / java.io.tmpdir/ java.io.tmpdir/user.name/hive.log中,假如使用hadoop用户操作的hive,那么日志文件的存储路径为:/temp/hadoop/hive.log

2.1 Hive存储格式

  • hive的存储格式分为行式存储和列式存储
  • hive的默认存储方式是行式存储中的TextFile,除此之外,还有SequenceFile
  • 列式存储也有两个:ORC和PARQUET

以下是行式存储和列式存储的示意图

当我们选择使用行式存储,查询所有字段的时候,查询效率最高,如:

SELECT * FROM TABLE_NAME [WHERE  CONDITION]

但是,如果查询具体某几个字段时,查询效率就比较低,但对于列式存储来说,效率却能得到很大提升。一般项目中,我们使用的是列式存储,一般使用的是ORC存储

  • 建表时指定存储格式

这过程中,使用ORC列式存储方式的数据会进行压缩,使数据的摆放方式更加合理。

orc内部默认采用的压缩算法是zlib

-- 建表(默认)
create table test_text (
	id int,
	name string
)
row format delimited fields terminated by '\\t';
-- 加载数据到test_text 
load data inpath '/hive/text.log' into test_text;
-- 建表(orc)
create table test_orc (
	id int,
	name string
)
row format delimited fields terminated by '\\t'
stored as orc;
-- 加载数据,查询并插入(执行MapReduce)
insert into test_orc select * from test_text;
  • 建表时指定存储格式的压缩算法

上面说到ORC的默认压缩算法为zlib,我们也可以通过设置去指定其压缩算法

create table test_orc_snappy(
id int,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\t'
STORED AS orc tblproperties ("orc.compress"="SNAPPY");

所以,结合压缩算法,我们对hive的分层中,可以通过存储格式和压缩方式进行结合,达到我们对每个分层的优化效果

层级压缩方式存储格式原因
ODS层zlib、gz、bz2ORC省空间
DW层snappyORC速度快
DA层snappyORC速度快

2.2 Hive中的数据模型

Hive 中所有的数据都存储在 HDFS 中Hive 中包含以下数据模型:

  • 表(Table)
  • 外部表(External Table)
  • 分区(Partition)
  • 桶(Bucket)

3 Hive应用

3.1 Hive内置函数

关系运算数学运算逻辑运算复合类型构造函数复合类型操作符数值计算函数集合操作函数类型转换函数日期函数汇总统计函数(UDAF)
等值比较: =加法操作: +逻辑与操作: AND 、&&map结构获取array中的元素取整函数: roundmap类型大小:size二进制转换:binaryUNIX时间戳转日期函数: from_unixtime个数统计函数: count
等值比较:<=>减法操作: –逻辑或操作: OR 、||struct结构获取map中的元素指定精度取整函数: roundarray类型大小:size基础类型之间强制转换:cast获取当前UNIX时间戳函数: unix_timestamp总和统计函数: sum
不等值比较: <>和!=乘法操作: *逻辑非操作: NOT、!named_struct结构获取struct中的元素向下取整函数: floor判断元素数组是否包含元素:array_contains日期转UNIX时间戳函数: unix_timestamp平均值统计函数: avg
小于比较: <除法操作: /array结构向上取整函数: ceil获取map中所有value集合指定格式日期转UNIX时间戳函数: unix_timestamp最小值统计函数: min
小于等于比较: <=取余操作: %create_union向上取整函数: ceiling获取map中所有key集合日期时间转日期函数: to_date最大值统计函数: max
大于比较: >位与操作: &取随机数函数: rand数组排序日期转年函数: year非空集合总体变量函数: var_pop
大于等于比较: >=位或操作:自然指数函数: exp日期转月函数: month非空集合样本变量函数: var_samp
区间比较位异或操作: ^以10为底对数函数: log10日期转天函数: day总体标准偏离函数: stddev_pop
空值判断: IS NULL位取反操作: ~以2为底对数函数: log2日期转小时函数: hour样本标准偏离函数: stddev_samp
非空判断: IS NOT NULL对数函数: log日期转分钟函数: minute中位数函数: percentile
LIKE比较: LIKE幂运算函数: pow日期转秒函数: second近似中位数函数: percentile_approx
JAVA的LIKE操作: RLIKE幂运算函数: power日期比较函数: datediff直方图: histogram_numeric
REGEXP操作: REGEXP开平方函数: sqrt日期增加函数: date_add集合去重数:collect_set

3.2 SQL介绍与Hive应用场景

3.2.1 数据库操作和表操作

作用HiveQL
查看所有数据库SHOW DATABASES;
使用指定的数据库USE database_name;
创建指定名称的数据库CREATE DATABASE database_name;
删除数据库DROP DATABASE database_name;
创建表CREATE TABLE pokes (foo INT, bar STRING)
查看所有的表SHOW TABLES
支持模糊查询SHOW TABLES ‘TMP’
查看表有哪些分区SHOW PARTITIONS TMP_TABLE
查看表结构DESCRIBE TMP_TABLE
创建表并创建索引dsCREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING)
复制一个空表CREATE TABLE empty_key_value_store LIKE key_value_store
表添加一列ALTER TABLE pokes ADD COLUMNS (new_col INT)
更改表名ALTER TABLE events RENAME TO 3koobecaf

3.2.2 查询语句

作用HiveQL
检索信息SELECT from_columns FROM table WHERE conditions;
选择所有的数据SELECT * FROM table;
行筛选SELECT * FROM table WHERE rec_name = “value”;
多个限制条件SELECT * FROM TABLE WHERE rec1 = “value1” AND rec2 = “value2”;
选择多个特定的列SELECT column_name FROM table;
检索unique输出记录SELECT DISTINCT column_name FROM table;
排序SELECT col1, col2 FROM table ORDER BY col2;
逆序SELECT col1, col2 FROM table ORDER BY col2 DESC;
统计行数SELECT COUNT(*) FROM table;
分组统计SELECT owner, COUNT(*) FROM table GROUP BY owner;
求某一列最大值SELECT MAX(col_name) AS label FROM table;
从多个表中检索信息SELECT pet.name, comment FROM pet JOIN event ON (pet.name = event.name);

3.3 表注释添加

以下2个语句都正确:

ALTER TABLE table_name SET TBLPROPERTIES('comment' = '表的新注释');
alter table  table_name set tblproperties('comment' = '表的新注释');

或:

alter table  table_name set tblproperties("comment" = "表的新注释");

注意:comment一定要是小写的,不能是COMMENT!!!

ALTER TABLE table_name SET TBLPROPERTIES(comment = "表的新注释");
-- 语句报错
ALTER TABLE table_name SET TBLPROPERTIES('COMMENT' = '表的新注释');
-- 语句不报错,但并不是修改表注释,只是在TBLPROPERTIES下新加了一个叫COMMENT的属性,用show create table table_name能看到。

3.4 表删除操作

hive 表删除部分数据不支持使用 Delete From table_name where …语句,hive表删除数据要分为不同的粒度:table、partition、partition内。

3.4.1 有Partition分区表

有分区字段的数据表,删除数据时要注意分两种情况:

1、根据分区删除数据,可以删除满足条件的分区,具体代码格式如下:

--删除一个分区的数据
alter table table_name drop partition(partiton_name='value')
--删除多个分区的数据
alter table table_name drop partition(partiton_name<'value')
alter table table_name drop partition(partiton_name<='value')
alter table table_name drop partition(partiton_name>'value')
alter table table_name drop partition(partiton_name>='value')

2、删除分区内部的部分数据,这时使用重写方式对满足条件的分区进行 overweight 操作,并通过 where 来限定需要的信息,未过滤的的信息将被删除,具体代码格式如下:

insert overwrite table table_name partition(partition_name='value') 
select column1,column2,column2 FROM table_name
where partition_name='value' and column2 is not null

3、删除某一条数据

insert overwrite table table_name select * from table_name where 条件

释义:就是用满足条件的数据去覆盖原表的数据,这样只要在where条件里面过滤需要删除的数据就可以了

示例:

INSERT overwrite TABLE test.test_data 
SELECT * FROM test.test_data WHERE insert_date <>'2022-06-26'

3.4.2 没有 Partition 分区表

1、直接清空数据,再插入需要的数据,具体代码格式如下:

truncate table database.tablename

2、通过 overwrite 对所有数据重写,具体代码格式如下:

insert overweight table table_name 
select * from table_name WHERE column is not null  --限制条件可以自行修改

4 HIVE数据的压缩与存储格式

4.1 压缩

4.1.1 压缩概述

压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络带宽和磁盘空间的效率。在运行MR程序时,I/O操作、网络数据传输、 Shuffle和Merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,因此,使用数据压缩显得非常重要。

鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O和网络传输非常有帮助。可以在任意MapReduce阶段启用压缩。不过,尽管压缩与解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价。

4.1.2 压缩策略与原则

压缩是提高Hadoop运行效率的一种优化策略。通过对Mapper、Reducer运行过程的数据进行压缩,以减少磁盘IO,

提高MR程序运行速度。

注意:采用压缩技术减少了磁盘IO,但同时增加了CPU运算负担。所以,压缩特性运用得当能提高性能,但运用不当也可能降低性能。

压缩基本原则:

  1. 运算密集型的job,少用压缩
  2. IO密集型的job,多用压缩

4.2 Hadoop压缩配置

4.2.1 MR支持的压缩编码

压缩格式算法文件扩展名是否可切分
DEFLATEDEFLATE.deflate
GzipDEFLATE.gz
bzip2bzip2.bz2
LZOLZO.lzo
SnappySnappy.snappy

为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示:

压缩格式对应的编码/解码器
DEFLATEorg.apache.hadoop.io.compress.DefaultCodec
gziporg.apache.hadoop.io.compress.GzipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较:

压缩算法原始文件大小压缩文件大小压缩速度解压速度
gzip8.3GB1.8GB17.5MB/s58MB/s
bzip28.3GB1.1GB2.4MB/s9.5MB/s
LZO8.3GB2.9GB49.3MB/s74.6MB/s

按照Hive对数据的分层,我们可以在对应层使用这样的压缩方式:

层级压缩方式原因
ODS层zlib、gz、bz2省空间
DW层snappy速度快
DA层snappy速度快
  • 相关参数设置
-- 开启Map端压缩
set hive.exec.compress.intermediate=true;
set mapreduce.map.output.compress=true;
set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;

-- 开启hive最终输出数据压缩功能
set hive.exec.compress.output=true;
-- 开启mapreduce最终输出数据压缩
set mapreduce.output.fileoutputformat.compress=true;
-- 设置mapreduce最终数据输出压缩方式
set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
-- 设置mapreduce最终数据输出压缩为块压缩
set mapreduce.output.fileoutputformat.compress.type=BLOCK;

4.2.2 压缩方式选择

4.2.2.1 Gzip压缩

优点:压缩率比较高,而且压缩/解压速度也比较快;Hadoop本身支持,在应用中处理Gzip格式的文件就和直接处理文本一样;大部分Linux系统都自带Gzip命令,使用方便。

缺点:不支持Split。

应用场景:当每个文件压缩之后在130M以内的(1个块大小内),都可以考虑用Gzip压缩格式。例如说一天或者一个小时的日志压缩成一个Gzip文件。

4.2.2.2 Bzip2压缩

优点:支持Split;具有很高的压缩率,比Gzip压缩率都高;Hadoop本身自带,使用方便。

缺点:压缩/解压速度慢。

应用场景:适合对速度要求不高,但需要较高的压缩率的时候;或者输出之后的数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用得比较少的情况;或者对单个很大的文本文件想压缩减少存储空间,同时又需要支持Split,而且兼容之前的应用程序的情况。

4.2.2.3 Lzo压缩

优点:压缩/解压速度也比较快,合理的压缩率;支持Split,是Hadoop中最流行的压缩格式;可以在Linux系统下安装lzop命令,使用方便。

缺点:压缩率比Gzip要低一些;Hadoop本身不支持,需要安装;在应用中对Lzo格式的文件需要做一些特殊处理(为了支持Split需要建索引,还需要指定InputFormat为Lzo格式)。

应用场景:一个很大的文本文件,压缩之后还大于200M以上的可以考虑,而且单个文件越大,Lzo优点越越明显。

4.2.2.4 Snappy压缩

优点:高速压缩速度和合理的压缩率。

缺点:不支持Split;压缩率比Gzip要低;Hadoop本身不支持,需要安装。

应用场景:当MapReduce作业的Map输出的数据比较大的时候,作为Map到Reduce的中间数据的压缩格式;或者作为一个MapReduce作业的输出和另外一个MapReduce作业的输入。

4.2.3 压缩参数配置

要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):

参数默认值阶段建议
io.compression.codecs (在core-site.xml中配置)org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec, org.apache.hadoop.io.compress.Lz4Codec输入压缩Hadoop使用文件扩展名判断是否支持某种编解码器
mapreduce.map.output.compressfalsemapper输出这个参数设为true启用压缩
mapreduce.map.output.compress.codecorg.apache.hadoop.io.compress.DefaultCodecmapper输出使用LZO、LZ4或snappy编解码器在此阶段压缩数据
mapreduce.output.fileoutputformat.compressfalsereducer输出这个参数设为true启用压缩
mapreduce.output.fileoutputformat.compress.codecorg.apache.hadoop.io.compress. DefaultCodecreducer输出使用标准工具或者编解码器,如gzip和bzip2
mapreduce.output.fileoutputformat.compress.typeRECORDreducer输出SequenceFile输出使用的压缩类型:NONE和BLOCK

4.3 开启Map输出阶段压缩

开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:

  1. 开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
  1. 开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
  1. 设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec=
 org.apache.hadoop.io.compress.SnappyCodec;
  1. 执行查询语句
hive (default)> select count(ename) name from emp;

4.4 开启Reduce输出阶段压缩

当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。

  1. 开启hive最终输出数据压缩功能

    hive (default)>set hive.exec.compress.output=true;
    
  2. 开启mapreduce最终输出数据压缩

    hive (default)>set mapreduce.output.fileoutputformat.compress=true;
    
  3. 设置mapreduce最终数据输出压缩方式

    hive (default)> set mapreduce.output.fileoutputformat.compress.codec =
     org.apache.hadoop.io.compress.SnappyCodec;
    
  4. 设置mapreduce最终数据输出压缩为块压缩

    hive (default)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;
    
  5. 测试一下输出结果是否是压缩文件

    hive (default)> insert overwrite local directory
     '/opt/module/hive/datas/distribute-result' select * from emp distribute by deptno sort by empno desc;
    

4.5 文件存储格式

Hive支持的存储数据的格式主要有:TEXTFILE 、SEQUENCEFILE、ORC、PARQUET。(前两个行存,后两个列存)

4.5.1 列式存储和行式存储

如图所示,左边为逻辑表,右边是底层存储格式,其中第一个为行式存储,第二个为列式存储。

  1. 行存储的特点

    查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。

  2. 列存储的特点

    因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。

4.5.2 TextFile格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用,但使用Gzip这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

4.5.3 Orc格式

Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。

如下图所示可以看到每个Orc文件由1个或多个stripe组成,每个stripe一般为HDFS的块大小,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row group的概念。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

  1. Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。
  2. Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
  3. Stripe Footer:存的是各个Stream的类型,长度等信息。

每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到FileFooter长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

4.5.4 Parquet格式

Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。

  1. 行组(Row Group):每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,类似于orc的stripe的概念。
  2. 列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。一个列块中的值都是相同类型的,不同的列块可能使用不同的算法进行压缩。
  3. 页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。

通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式。

上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

4.5.5 主流文件存储格式对比实验

log.data文件下载

链接:https://pan.baidu.com/s/1fvnZ29iMZqRtrdzy5JoAQg

提取码:9wi0

  1. TextFile
-- 创建表,存储数据格式为TEXTFILE
create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\\t'
stored as textfile;
-- 向表中加载数据
hive (default)> load data local inpath '/opt/module/hive/datas/log.data' into table log_text ;
-- 查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_text;
  1. ORC
-- 创建表,存储数据格式为ORC
create table log_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\\t'
stored as orc
tblproperties("orc.compress"="NONE"); -- 设置orc存储不使用压缩
-- 向表中加载数据(直接load会报编码格式不匹配的错误)
hive (default)> insert into table log_orc select * from log_text ;
-- 查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_orc/ ;
  1. Parquet
-- 创建表,存储数据格式为parquet
create table log_parquet(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\\t'
stored as parquet ;
-- 向表中加载数据
hive (default)> insert into table log_parquet select * from log_text;
-- 查看表中数据大小
hive 以上是关于Hive手册的主要内容,如果未能解决你的问题,请参考以下文章

大数据系列 (Hadoop) Hive 安装配置

大数据Hadoop在呼唤Hive(附一键部署Hive脚本)

Hive入门学习--Hadoop简介

大数据组件之Hive(Hive学习一篇就够了)

大数据学习:基于Hadoop的数据仓库Hive 基础知识

大数据 hadoop pig hive 关系