python数据拟合
Posted BkbK-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python数据拟合相关的知识,希望对你有一定的参考价值。
python数据拟合
1.多项式拟合
1.1 多项式拟合描述
输入:多项式次数
n
n
n;数据集合
{
(
x
i
,
y
i
)
}
\\{(x_i,y_i)\\}
{(xi,yi)}
输出:
f
n
(
x
)
f_n(x)
fn(x),使得
∑
(
f
(
x
i
)
−
y
i
)
2
\\sum(f(x_i)-y_i)^2
∑(f(xi)−yi)2 最小
解决方案:polyfit ( x , y , deg , rcond = None , full = False , w = None )
1.2 多项式拟合实现
导入库:numoy、matplotlib
#导入库
import numpy as np
import matplotlib.pyplot as plt
生成测试数据:
#定义测试多项式函数
def func1(x):
return 3*x*x*x-2*x*x+4
#生成测试数组
x1 = np.array([1,2,3,4,5,6,7,8])
y1 = func1(x1)
#添加噪声
n1 = np.random.normal(0.0,1.0,8)*0.1
y1 = y1*(1+n1)
数据拟合:
f1 = np.polyfit(x1, y1, 3)
p1 = np.poly1d(f1)
print('p1 is :\\n',p1)
p1 is :
3 2
-1.897 x + 57.77 x - 204.8 x + 177.6
得到拟合函数:
f
1
=
−
1.897
x
3
+
57.77
x
2
−
204.8
x
+
177.6
f_1=-1.897x^3+57.77x^2-204.8x+177.6
f1=−1.897x3+57.77x2−204.8x+177.6
绘制拟合曲线:
xx1 = np.arange(1,9,0.2)
yvals1 = p1(xx1) #拟合y值
#绘图
plot1 = plt.plot(x1, y1, 'o',label='original values')
plot2 = plt.plot(xx1, yvals1, 'r-',label='polyfit values')
plt.xlabel('x1')
plt.ylabel('y1')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('polyfitting')
plt.show()
2.自定义函数拟合
2.1 自定义函数拟合描述
输入:自定义函数
f
(
x
)
f(x)
f(x)及参数
σ
i
\\sigma_i
σi;数据集合
{
(
x
i
,
y
i
)
}
\\{(x_i,y_i)\\}
{(xi,yi)}
输出:使得
∑
(
f
(
x
i
)
−
y
i
)
2
\\sum(f(x_i)-y_i)^2
∑(f(xi)−yi)2 最小参数取值
解决方案:scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(- inf, inf), method=None, jac=None, **kwargs)
2.1 自定义函数拟合的实现
导入库:numpy、matplotlib、scipy
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
设置拟合数据:
x2 = np.array([1,2,3,4,5,6,7,8,9,10])
y2 = np.array([0.16,0.63,1.60,3.00,8.00,33.0,73.0,125.0,211.0,310.0])
y2=y2*100
自定义拟合函数:
def func2(x, p, q,m):
return m*(1-np.exp(-x*(p+q)))/(1+q/p*np.exp(-(p+q)*x))
非线性最小二乘法拟合:
popt, pcov = curve_fit(func2, x2, y2)
拟合y值
p = popt[0]
q = popt[1]
m = popt[2]
yvals2 = func2(x2,p,q,m) #拟合y值
print('popt:', popt)
print('系数p:', p)
print('系数q:', q)
print('系数m:', m)
print('系数pcov:', pcov)
print('系数yvals2:', yvals2)
popt: [4.93963593e-04 7.86873973e-01 4.96871803e+04]
系数p: 0.0004939635925128215
系数q: 0.7868739729224568
系数m: 49687.18030400891
系数pcov: [[ 1.16165013e-08 -4.88182871e-06 3.60534694e-01]
[-4.88182871e-06 2.28100736e-03 -1.95238501e+02]
[ 3.60534694e-01 -1.95238501e+02 1.97747550e+07]]
系数yvals2: [ 37.30343602 119.0851606 297.86586198 686.25958059
1518.69723981 3252.26832861 6655.68174484 12625.30614774
21284.37699301 30920.18607139]
绘制拟合图像
xx2 = np.arange(1,21)
y2test = func2(xx2,p,q,m)
#绘图
plot1 = plt.plot(x2, y2, 's',label='original values')
plot2 = plt.plot(xx2, y2test, 'r',label='polyfit values')
plt.xlabel('x2')
plt.ylabel('y2')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('curve_fit')
plt.show()
以上是关于python数据拟合的主要内容,如果未能解决你的问题,请参考以下文章
数据可视化应用绘制拟合区间统计图表(附Python和R语言代码)
使用 Python 将 sigmoid 函数(“S”形曲线)拟合到数据中