消息中间件MQ与RabbitMQ核心知识点
Posted 在奋斗的大道
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了消息中间件MQ与RabbitMQ核心知识点相关的知识,希望对你有一定的参考价值。
为什么使用消息队列MQ?消息队列MQ的优点
优点:
- 异步处理 - 相比于传统的串行、并行方式,提高了系统吞吐量。
- 应用解耦 - 系统间通过消息通信,不用关心其他系统的处理。
- 流量削锋 - 可以通过消息队列长度控制请求量;可以缓解短时间内的高并发请求。
- 日志处理 - 解决大量日志传输。
- 消息通讯 - 消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
消息队列(MQ)有什么缺点?
缺点:
系统可用性降低
本来系统运行好好的,现在你非要加入个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性会降低;
系统复杂度提高
加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。
一致性问题
A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。
Kafka、ActiveMQ、RabbitMQ、RocketMQ 性能对比?
ActiveMQ | RabbitMQ | RocketMQ | Kafka | ZeroMQ | |
单机吞吐量 | 比RabbitMQ低 | 2.6w/s(消息做持久化) | 11.6w/s | 17.3w/s | 29w/s |
开发语言 | Java | Erlang | Java | Scala/Java | C |
主要维护者 | Apache | Mozilla/Spring | Alibaba | Apache | iMatix,创始人已去世 |
成熟度 | 成熟 | 成熟 | 开源版本不够成熟 | 比较成熟 | 只有C、php等版本成熟 |
订阅形式 | 点对点(p2p)、广播(发布-订阅) | 提供了4种:direct, topic ,Headers和fanout。fanout就是广播模式 | 基于topic/messageTag以及按照消息类型、属性进行正则匹配的发布订阅模式 | 基于topic以及按照topic进行正则匹配的发布订阅模式 | 点对点(p2p) |
持久化 | 支持少量堆积 | 支持少量堆积 | 支持大量堆积 | 支持大量堆积 | 不支持 |
顺序消息 | 不支持 | 不支持 | 支持 | 支持 | 不支持 |
性能稳定性 | 好 | 好 | 一般 | 较差 | 很好 |
集群方式 | 支持简单集群模式,比如’主-备’,对高级集群模式支持不好。 | 支持简单集群,'复制’模式,对高级集群模式支持不好 | 常用 多对’Master-Slave’ 模式,开源版本需手动切换Slave变成Master | 天然的‘Leader-Slave’无状态集群,每台服务器既是Master也是Slave | 不支持 |
管理界面 | 一般 | 较好 | 一般 | 无 | 无 |
总结:中小型公司,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。大数据领域的实时计算、日志采集等场景,用 Kafka
消息队列MQ 有哪些常见问题?如何解决这些问题?
消息队列MQ 的常见问题有:
- 消息的顺序问题
- 消息的重复问题
消息的顺序问题
消息有序:指的是按照消息的发送顺序来消费。
假如生产者产生了 2 条消息:M1、M2,假定 M1 发送到 S1,M2 发送到 S2,如果要保证 M1 先于 M2 被消费,怎么做?
解决方案:
(1)保证生产者 - MQServer - 消费者是一对一的关系
此方案的缺陷:
- 并行度就会成为消息系统的瓶颈(吞吐量不够)
- 更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。
消息的重复问题
造成消息重复的根本原因是:网络不可达(网络异常)。
所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?
消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。
什么是RabbitMQ?
RabbitMQ是一款开源的,Erlang编写的,基于AMQP协议的消息中间件
RabbitMQ 使用场景
(1)服务间异步通信
(2)顺序消费
(3)定时任务
(4)请求削峰
RabbitMQ 基本概念
- Broker: 简单来说就是消息队列服务器实体
- Exchange: 消息交换机,它指定消息按什么规则,路由到哪个队列
- Queue: 消息队列载体,每个消息都会被投入到一个或多个队列
- Binding: 绑定,它的作用就是把exchange和queue按照路由规则绑定起来
- Routing Key: 路由关键字,exchange根据这个关键字进行消息投递
- VHost: vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的 queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。
- Producer: 消息生产者,就是投递消息的程序
- Consumer: 消息消费者,就是接受消息的程序
- Channel: 消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务
核心知识点:由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。
RabbitMQ的工作模式
一.simple模式(即最简单的收发模式)
- 消息产生消息,将消息放入队列
- 消息的消费者(consumer) 监听 消息队列,如果队列中有消息,就消费掉,消息被拿走后,自动从队列中删除(隐患 消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。
二.work工作模式(资源的竞争)
- 消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用)。
三.publish/subscribe发布订阅(共享资源)
- 每个消费者监听自己的队列;
- 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。
四.routing路由模式
- 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息;
- 根据业务功能定义路由字符串
- 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。
- 业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误;
五.topic 主题模式(路由模式的一种)
- 星号井号代表通配符
- 星号代表多个单词,井号代表一个单词
- 路由功能添加模糊匹配
- 消息产生者产生消息,把消息交给交换机
- 交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费(个人理解看起来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式)
如何保证RabbitMQ消息的顺序性?
RabbitMQ消息的顺序性之业务场景
举例:
通过mysql binlog进行两个数据库的数据同步,由于对数据库的数据操作是具有顺序性的,如果操作顺序搞反,就会造成不可估量的错误。比如数据库对一条数据依次进行了 插入->更新->删除操作,这个顺序必须是这样,如果在同步过程中,消息的顺序变成了 删除->插入->更新,那么原本应该被删除的数据,就没有被删除,造成数据的不一致问题。
RabbitMQ消息出现混乱情景
①一个queue,有多个consumer去消费,这样就会造成顺序的错误,consumer从MQ里面读取数据是有序的,但是每个consumer的执行时间是不固定的,无法保证先读到消息的consumer一定先完成操作,这样就会出现消息并没有按照顺序执行,造成数据顺序错误。
②一个queue对应一个consumer,但是consumer里面进行了多线程消费,这样也会造成消息消费顺序错误。
保证RabbitMQ消息的顺序性
①拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;这样也会造成吞吐量下降,可以在消费者内部采用多线程的方式取消费。
②或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理
RabbitMQ队列支持消息那些分发模式?
支持消息分发模式:Fair dispatch(公平分发) (默认模式) 和 Round-robin dispatch(轮询分发)
RabbitMQ消息如何路由?及其支持交换器模式?
- 消息提供方->路由->一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后,RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则);
常用的交换器主要分为以下种:
fanout:如果交换器收到消息,将会广播到所有绑定的队列上
direct:如果路由键完全匹配,消息就被投递到相应的队列
topic:可以使来自不同源头的消息能够到达同一个队列。 使用 topic 交换器时,可以使用通配符
header: 不建议使用
RabbitMQ消息基于什么传输
RabbitMQ 使用信道的方式来传输数据。信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。
RabbitMQ如何保证消息不被重复消费?
为什么会重复消费:正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除;
但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。
解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;
实战:在写入消息队列的数据做唯一标示,消费消息时,根据唯一标识判断是否消费过;
假设你有个系统,消费一条消息就往数据库里插入一条数据,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下是否已经消费过了,若是就直接扔了,这样不就保留了一条数据,从而保证了数据的正确性。
如何确保消息正确地发送至 RabbitMQ? 如何确保消息接收方消费了消息?
发送方确认模式
- 将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的 ID。
- 一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一 ID)。
- 如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(notacknowledged,未确认)消息。
- 发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息。当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被触发来处理确认消息。
接收方确认机制
- 消费者接收每一条消息后都必须进行确认(消息接收和消息确认是两个不同操作)。只有消费者确认了消息,RabbitMQ 才能安全地把消息从队列中删除。
- 这里并没有用到超时机制,RabbitMQ 仅通过 Consumer 的连接中断来确认是否需要重新发送消息。也就是说,只要连接不中断,RabbitMQ 给了 Consumer 足够长的时间来处理消息。保证数据的最终一致性;
下面罗列几种特殊情况
- 如果消费者接收到消息,在确认之前断开了连接或取消订阅,RabbitMQ 会认为消息没有被分发,然后重新分发给下一个订阅的消费者。(可能存在消息重复消费的隐患,需要去重)
- 如果消费者接收到消息却没有确认消息,连接也未断开,则 RabbitMQ 认为该消费者繁忙,将不会给该消费者分发更多的消息。
如何保证RabbitMQ消息的可靠传输?
消息不可靠的情况可能是消息丢失,劫持等原因;
丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;
生产者丢失消息:从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息;
transaction机制就是说:发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。然而,这种方式有个缺点:吞吐量下降;
confirm模式用的居多:一旦channel进入confirm模式,所有在该信道上发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后;
rabbitMQ就会发送一个ACK给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了;
如果rabbitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
消息队列丢数据:消息持久化。
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。
这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。
这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。
那么如何持久化呢?
这里顺便说一下吧,其实也很容易,就下面两步
- 将queue的持久化标识durable设置为true,则代表是一个持久的队列
- 发送消息的时候将deliveryMode=2
这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据
消费者丢失消息:消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!
消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;
如果这时处理消息失败,就会丢失该消息;
解决方案:处理消息成功后,手动回复确认消息。
如何保证RabbitMQ高可用?
RabbitMQ 是比较有代表性的,因为是基于主从(非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。
单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的?,没人生产用单机模式
普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。
镜像集群模式:这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
以上是关于消息中间件MQ与RabbitMQ核心知识点的主要内容,如果未能解决你的问题,请参考以下文章