多项式拟合实验,进行模型复杂度和过拟合欠拟合的关系
Posted tacit-lxs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多项式拟合实验,进行模型复杂度和过拟合欠拟合的关系相关的知识,希望对你有一定的参考价值。
多项式拟合实验,进行模型复杂度和过拟合、欠拟合的关系
%matplotlib inline
import torch
import numpy as np
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
#生成数据
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5 #训练集和测试集均为100,拟合多项式y = 1.2x - 3.4x^2 + 5.6x^3 + 5
features = torch.randn((n_train + n_test, 1))
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) #x、x^2、x^3
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1] + true_w[2] * poly_features[:, 2] + true_b) # 生成标签
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float) # 给标签加上噪声
def set_figsize(figsize=(3.5, 2.5)):
use_svg_display()
# 设置图的尺寸
plt.rcParams['figure.figsize'] = figsize
def use_svg_display():
"""Use svg format to display plot in jupyter"""
display.set_matplotlib_formats('svg')
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
legend=None, figsize=(3.5, 2.5)):
set_figsize(figsize)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.semilogy(x_vals, y_vals)
if x2_vals and y2_vals:
plt.semilogy(x2_vals, y2_vals, linestyle=':')
plt.legend(legend)
num_epochs, loss = 100, torch.nn.MSELoss()
def fit_and_plot(train_features, test_features, train_labels, test_labels):
net = torch.nn.Linear(train_features.shape[-1], 1)
# 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
batch_size = min(10, train_labels.shape[0])
dataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
train_ls, test_ls = [], []
for _ in range(num_epochs):
for X, y in train_iter:
l = loss(net(X), y.view(-1, 1))
optimizer.zero_grad()
l.backward()
optimizer.step()
train_labels = train_labels.view(-1, 1)
test_labels = test_labels.view(-1, 1)
train_ls.append(loss(net(train_features), train_labels).item())
test_ls.append(loss(net(test_features), test_labels).item())
print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
range(1, num_epochs + 1), test_ls, ['train', 'test'])
print('weight:', net.weight.data,
'\\nbias:', net.bias.data)
fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :],
labels[:n_train], labels[n_train:]) #三阶拟合
fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train],
labels[n_train:]) # 线性拟合 产生欠拟合,模型复杂度不够
fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2],
labels[n_train:]) # 训练样本不足的三阶拟合,产生过拟合
以上是关于多项式拟合实验,进行模型复杂度和过拟合欠拟合的关系的主要内容,如果未能解决你的问题,请参考以下文章