区间第K小(可持久化线段树)
Posted jpphy0
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了区间第K小(可持久化线段树)相关的知识,希望对你有一定的参考价值。
问题
- 给定一个序列
a
1
,
a
2
,
⋯
,
a
n
a_1,a_2,\\cdots,a_n
a1,a2,⋯,an,
m
m
m 次操作,每次给定
l
,
r
,
k
l,r,k
l,r,k,问
a
l
,
a
l
+
1
,
⋯
,
a
r
a_l,a_{l+1},\\cdots ,a_r
al,al+1,⋯,ar中第
k
k
k 小的值.
- 1 ≤ a i ≤ n 1 \\leq a_i \\leq n 1≤ai≤n
- 1 ≤ n , m ≤ 100000 1\\leq n,m \\leq 100000 1≤n,m≤100000
- 1 ≤ l ≤ r ≤ n , 1 ≤ k ≤ r − l + 1 1\\leq l \\leq r\\leq n,1\\leq k \\leq r-l+1 1≤l≤r≤n,1≤k≤r−l+1
分析
- 序 → \\rightarrow → 时间
- n棵线段树维护各个时刻的各个数字的出现次数
- 增量持久化策略优化线段树
代码
一般形式
#include<bits/stdc++.h>
using namespace std;
const int MXN = 1e5+5;
int N, M, a[MXN], b[MXN], c[MXN], tot, ver[MXN];
struct TreeNode{
int l, r, sum; // l、r:子树;sum:出现次数
}tree[MXN<<5];
void pushup(int root){
TreeNode &rt = tree[root];
TreeNode &ls = tree[rt.l], &rs = tree[rt.r];
rt.sum = ls.sum + rs.sum;
}
int build(int l, int r){
int root = ++tot;
tree[root].sum = 0;
if(l == r) return root;
int mid = (l+r)>>1;
tree[root].l = build(l, mid); // 左子树
tree[root].r = build(mid+1, r); // 右子树
return root;
}
int change(int node, int l, int r, int pos){ // node:待更新的子树
int root = ++tot;
TreeNode &rt = tree[root];
rt = tree[node]; // 复制
if(l == r){
rt.sum += 1;
return root;
}
int mid = (l+r)>>1;
if(pos <= mid) rt.l = change(rt.l, l, mid, pos);
else rt.r = change(rt.r, mid+1, r, pos);
pushup(root); // 上推更新
return root;
}
int query(int pre, int lst, int l, int r, int k){
if(l == r) return r;
TreeNode &pn = tree[pre], &ln = tree[lst];
int x = tree[ln.l].sum - tree[pn.l].sum;
int mid = (l+r)>>1;
if(x >= k) return query(pn.l, ln.l, l, mid, k);
else return query(pn.r, ln.r, mid+1, r, k-x);
}
int main(){
int t, L, R, K;
scanf("%d", &t);
while(t--){
memset(b, 0, sizeof b), tot = 0;
scanf("%d%d", &N, &M);
for(int i = 1; i <= N; ++i) scanf("%d", a+i), b[a[i]] = 1;
for(int i = 2; i <= N; ++i) b[i] += b[i-1];
for(int pc=0, i = 1; i <= N; ++i) if(b[i] > b[i-1]) c[++pc] = i;
ver[0] = build(1, b[N]);
for(int i = 1; i <= N; ++i)
ver[i] = change(ver[i-1], 1, b[N], b[a[i]]);
while(M--){
scanf("%d%d%d", &L, &R, &K);
printf("%d\\n", c[query(ver[L-1], ver[R], 1, b[N], K)]);
}
}
return 0;
}
简化形式
#include<bits/stdc++.h>
using namespace std;
const int MXN = 1e5+5;
int N, M, tot, ver[MXN];
struct TreeNode{
int l, r, sum;
}tree[MXN*20];
int build(int l, int r){ // 初始树
int root = ++tot;
tree[root].sum = 0;
tree[root].l = root;
tree[root].r = root;
return root;
}
int change(int node, int l, int r, int pos){
int root = ++tot;
TreeNode &rt = tree[root];
rt = tree[node], ++rt.sum;
if(l == r) return root;
int mid = (l+r)>>1;
if(pos <= mid) rt.l = change(rt.l, l, mid, pos);
else rt.r = change(rt.r, mid+1, r, pos);
return root;
}
int query(int pre, int lst, int l, int r, int k){
if(l == r) return r;
TreeNode &pn = tree[pre], &ln = tree[lst];
int x = tree[ln.l].sum - tree[pn.l].sum;
int mid = (l+r)>>1;
if(x >= k) return query(pn.l, ln.l, l, mid, k);
else return query(pn.r, ln.r, mid+1, r, k-x);
}
int main(){
int t, x, L, R, K;
scanf("%d", &t);
while(t--){
tot = 0;
scanf("%d%d", &N, &M);
ver[0] = build(1, N);
for(int i = 1; i <= N; ++i){
scanf("%d", &x);
ver[i] = change(ver[i-1], 1, N, x);
}
while(M--){
scanf("%d%d%d", &L, &R, &K);
printf("%d\\n", query(ver[L-1], ver[R], 1, N, K));
}
}
return 0;
}
以上是关于区间第K小(可持久化线段树)的主要内容,如果未能解决你的问题,请参考以下文章
HDU 2665.Kth number-无修改区间第K小-可持久化线段树(主席树)模板