尚硅谷_Java零基础教程(多线程)-- 学习笔记
Posted JMW1407
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了尚硅谷_Java零基础教程(多线程)-- 学习笔记相关的知识,希望对你有一定的参考价值。
Java 多线程
一、基本概念
1、程序、进程、线程
程序(program)
:是为完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码,静态对象。进程(process)
:是程序的一次执行过程,或是正在运行的一个程序。是一个动态的过程:有它自身的产生、存在和消亡的过程。——生命周期- 如:运行中的QQ,运行中的MP3播放器
- 程序是静态的,进程是动态的
- 进程作为资源分配的单位, 系统在运行时会为每个进程分配不同的内存区域
线程(thread)
:进程可进一步细化为线程,是一个程序内部的一条执行路径。- 若一个进程同一时间并行执行多个线程,就是支持多线程的
- 线程作为调度和执行的单位,每个线程拥有独立的运行栈和程序计数器(pc),线程切换的开销小
- 一个进程中的多个线程共享相同的内存单元/内存地址空间它们从同一堆中分配对象,可以访问相同的变量和对象。这就使得线程间通信更简便、高效。但多个线程操作共享的系统资源可能就会带来安全的隐患。
进程与线程
- 每个线程都有独立的栈,程序计数器
- 多个线程共享同一个进程中的结构:方法区,堆
2、单核CPU和多核CPU、并行与并发
单核CPU和多核CPU
- 单核CPU,其实是一种假的多线程,因为在一个时间单元内,也只能执行一个线程的任务。例如:虽然有多车道,但是收费站只有一个工作人员在收费,只有收了费才能通过,那么CPU就好比收费人员。如果有某个人不想交钱,那么收费人员可以把他“挂起”(晾着他,等他想通了,准备好了钱,再去收费) 。 但是因为CPU时间单元特别短,因此感觉不出来。
- 如果是多核的话,才能更好的发挥多线程的效率。(现在的服务器都是多核的)
- 一个Java应用程序java.exe,其实至少有三个线程: main()主线程,
gc()垃圾回收线程,异常处理线程。当然如果发生异常,会影响主线程。
并行与并发
- 并行: 多个CPU同时执行多个任务。比如:多个人同时做不同的事
- 并发:一个CPU(采用时间片)同时执行多个任务。比如:秒杀、多个人做同一件事
3、使用多线程的优点
背景: 以单核CPU为例, 只使用单个线程先后完成多个任务(调用多个方法),肯定比用多个线程来完成用的时间更短,为何仍需多线程呢?(线程切换需要耗费时间)
多线程程序的优点:
- 提高应用程序的响应。对图形化界面更有意义,可增强用户体验
- 提高计算机系统CPU的利用率
- 改善程序结构。将既长又复杂的进程分为多个线程,独立运行,利于理解和修改
何时需要多线程
- 程序需要同时执行两个或多个任务。
- 程序需要实现一些需要等待的任务时,如用户输入、文件读写操作、网络操作、搜索等。
- 需要一些后台运行的程序时。
二、线程的创建和使用
1、API中创建线程的两种方式
Thread类
构造器
- Thread(): 创建新的Thread对象
- Thread(String threadname): 创建线程并指定线程实例名
- Thread(Runnable target): 指定创建线程的目标对象,它实现了Runnable接口中的run方法
- Thread(Runnable target, String name): 创建新的Thread对象
JDK1.5之前创建新执行线程有两种方法
- 继承Thread类的方式
- 实现Runnable接口的方式
1.1、方式一: 继承Thread类
使用步骤
- 1、定义子类继承Thread类。
- 2、子类中重写Thread类中的run方法。
- 3、创建Thread子类对象,即创建了线程对象。
- 4、调用线程对象start方法:启动线程,调用run方法。
注意点:
- 如果自己手动调用run()方法,那么就只是普通方法,没有启动多线程模式。
- run()方法由JVM调用,什么时候调用,执行的过程控制都有操作系统的CPU调度决定。
- 想要启动多线程,必须调用start方法。
- 一个线程对象只能调用一次start()方法启动,如果重复调用了,则将抛出以上的异常“IllegalThreadStateException”。
demo
package atguigu.java;
/**
* 多线程的创建,方式一:继承于Thread类
* 1. 创建一个继承于Thread类的子类
* 2. 重写Thread类的run() --> 将此线程执行的操作声明在run()中
* 3. 创建Thread类的子类的对象
* 4. 通过此对象调用start()
* <p>
* 例子:遍历100以内的所有的偶数
*/
//1. 创建一个继承于Thread类的子类
class MyThread extends Thread {
//2. 重写Thread类的run()
@Override
public void run() {
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ":" + i);
}
}
}
}
public class ThreadTest {
public static void main(String[] args) {
//3. 创建Thread类的子类的对象
MyThread t1 = new MyThread();
//4.通过此对象调用start():①启动当前线程 ② 调用当前线程的run()
t1.start();
//问题一:我们不能通过直接调用run()的方式启动线程。
// t1.run();
//问题二:再启动一个线程,遍历100以内的偶数。不可以还让已经start()的线程去执行。会报IllegalThreadStateException
// t1.start();
//我们需要重新创建一个线程的对象
MyThread t2 = new MyThread();
t2.start();
//如下操作仍然是在main线程中执行的。
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ":" + i + "***********main()************");
}
}
}
}
1.2、方式二:实现Runnable接口
-
1、定义子类,实现Runnable接口。
-
2、子类中重写Runnable接口中的run方法。
-
3、通过Thread类含参构造器创建线程对象。
-
4、将Runnable接口的子类对象作为实际参数传递给Thread类的构造器中。
-
5、调用Thread类的start方法:开启线程, 调用Runnable子类接口的run方法。
demo
package atguigu.java;
/**
* 创建多线程的方式二:实现Runnable接口
* 1. 创建一个实现了Runnable接口的类
* 2. 实现类去实现Runnable中的抽象方法:run()
* 3. 创建实现类的对象
* 4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
* 5. 通过Thread类的对象调用start()
*
*
* 比较创建线程的两种方式。
* 开发中:优先选择:实现Runnable接口的方式
* 原因:1. 实现的方式没有类的单继承性的局限性
* 2. 实现的方式更适合来处理多个线程有共享数据的情况。
*
* 联系:public class Thread implements Runnable
* 相同点:两种方式都需要重写run(),将线程要执行的逻辑声明在run()中。
*/
//1. 创建一个实现了Runnable接口的类
class MThread implements Runnable{
//2. 实现类去实现Runnable中的抽象方法:run()
@Override
public void run() {
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ":" + i);
}
}
}
}
public class ThreadTest1 {
public static void main(String[] args) {
//3. 创建实现类的对象
MThread mThread = new MThread();
//4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
Thread t1 = new Thread(mThread);
t1.setName("线程1");
//5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run()
t1.start();
//再启动一个线程,遍历100以内的偶数
Thread t2 = new Thread(mThread);
t2.setName("线程2");
t2.start();
}
}
继承方式和实现方式的联系与区别
- 继承Thread:线程代码存放Thread子类run方法中。
- 实现Runnable:线程代码存在接口的子类的run方法。
实现方式的好处
- 避免了单继承的局限性
- 多个线程可以共享同一个接口实现类的对象,非常适合多个相同线程来处理同一份资源。
1.3、Thread类的调用的API方法
- void start(): 启动线程,并执行对象的run()方法
- run(): 线程在被调度时执行的操作
- String getName(): 返回线程的名称
- void setName(String name):设置该线程名称 static
- Thread currentThread(): 返回当前线程。在Thread子类中就是this,通常用于主线程和Runnable实现类
demo
package atguigu.java;
/**
* 创建多线程的方式二:实现Runnable接口
* 1. 创建一个实现了Runnable接口的类
* 2. 实现类去实现Runnable中的抽象方法:run()
* 3. 创建实现类的对象
* 4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
* 5. 通过Thread类的对象调用start()
*
*
* 比较创建线程的两种方式。
* 开发中:优先选择:实现Runnable接口的方式
* 原因:1. 实现的方式没有类的单继承性的局限性
* 2. 实现的方式更适合来处理多个线程有共享数据的情况。
*
* 联系:public class Thread implements Runnable
* 相同点:两种方式都需要重写run(),将线程要执行的逻辑声明在run()中。
*/
//1. 创建一个实现了Runnable接口的类
class MThread implements Runnable{
//2. 实现类去实现Runnable中的抽象方法:run()
@Override
public void run() {
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ":" + i);
}
}
}
}
public class ThreadTest1 {
public static void main(String[] args) {
//3. 创建实现类的对象
MThread mThread = new MThread();
//4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
Thread t1 = new Thread(mThread);
t1.setName("线程1");
//5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run()
t1.start();
//再启动一个线程,遍历100以内的偶数
Thread t2 = new Thread(mThread);
t2.setName("线程2");
t2.start();
}
}
- static void yield(): 线程让步
- 暂停当前正在执行的线程,把执行机会让给优先级相同或更高的线程
- 若队列中没有同优先级的线程,忽略此方法
- join() : 当某个程序执行流中调用其他线程的 join() 方法时, 调用线程将被阻塞,直到 join() 方法加入的 join
线程执行完为止- 低优先级的线程也可以获得执行
- static void sleep(long millis): (指定时间:毫秒)
- 令当前活动线程在指定时间段内放弃对CPU控制,使其他线程有机会被执行,时间到后重排队 抛出InterruptedException异常
- stop(): 强制线程生命期结束,不推荐使用
- boolean isAlive(): 返回boolean,判断线程是否还活着
demo
package atguigu.java;
/**
* 测试Thread中的常用方法:
* 1. start():启动当前线程;调用当前线程的run()
* 2. run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中
* 3. currentThread():静态方法,返回执行当前代码的线程
* 4. getName():获取当前线程的名字
* 5. setName():设置当前线程的名字
* 6. yield():释放当前cpu的执行权
* 7. join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才
* 结束阻塞状态。
* 8. stop():已过时。当执行此方法时,强制结束当前线程。
* 9. sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前
* 线程是阻塞状态。
* 10. isAlive():判断当前线程是否存活
*
*
* 线程的优先级:
* 1.
* MAX_PRIORITY:10
* MIN _PRIORITY:1
* NORM_PRIORITY:5 -->默认优先级
* 2.如何获取和设置当前线程的优先级:
* getPriority():获取线程的优先级
* setPriority(int p):设置线程的优先级
*
* 说明:高优先级的线程要抢占低优先级线程cpu的执行权。但是只是从概率上讲,高优先级的线程高概率的情况下
* 被执行。并不意味着只有当高优先级的线程执行完以后,低优先级的线程才执行。
*
*/
class HelloThread extends Thread{
@Override
public void run() {
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
// try {
// sleep(10);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i);
}
// if(i % 20 == 0){
// yield();
// }
}
}
public HelloThread(String name){
super(name);
}
}
public class ThreadMethodTest {
public static void main(String[] args) {
HelloThread h1 = new HelloThread("Thread:1");
// h1.setName("线程一");
//设置分线程的优先级
h1.setPriority(Thread.MAX_PRIORITY);
h1.start();
//给主线程命名
Thread.currentThread().setName("主线程");
Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
for (int i = 0; i < 100; i++) {
if(i % 2 == 0){
System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i);
}
// if(i == 20){
// try {
// h1.join();
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// }
}
// System.out.println(h1.isAlive());
}
}
2、线程的调度
调度策略
时间片
抢占式:高优先级的线程抢占CPU
Java的调度方法
- 同优先级线程组成先进先出队列(先到先服务),使用时间片策略
- 对高优先级,使用优先调度的抢占式策略
3、线程的优先级
线程的优先级等级
MAX_PRIORITY: 10
MIN _PRIORITY: 1
NORM_PRIORITY: 5(main方法的默认级别)
涉及的方法
getPriority() : 返回线程优先值
setPriority(int newPriority) : 改变线程的优先级
说明
- 线程创建时继承父线程的优先级
- 低优先级只是获得调度的概率低,并非一定是在高优先级线程之后才被调用
demo
public class ThreadMethodTest {
public static void main(String[] args) {
HelloThread h1 = new HelloThread();
h1.setName("线程一");
h1.setPriority(Thread.MAX_PRIORITY);//概率上,优先级高被优先执行的概率高
//不意味着高优先级的线程执行完,低优先级的线程才执行
h1.start();
//给主线程命名
Thread.currentThread().setName("主线程");
Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
for (int i = 0; i <100 ; i++) {
if(i%2==0){
System.out.println(Thread.currentThread().getName()+":"+i);
}
if(i==20){
try {
h1.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
System.out.println(h1.isAlive());//false
}
}
class HelloThread extends Thread{
@Override
public void run() {
for (int i = 0; i <100 ; i++) {
if(i % 2==0) {
// try {//不能throws异常,因为父类没有抛异常
// //子类重写异常不能大于父类
// sleep(1000);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
//System.out.println(Thread.currentThread().getName()+":"+i);
System.out.println(getName()+":"+i);
}
// if(i==20){
// yield();
// }
}
}
}
三、线程的生命周期
JDK中用Thread.State类定义了线程的几种状态
要想实现多线程, 必须在主线程中创建新的线程对象。 Java语言使用Thread类及其子类的对象来表示线程, 在它的一个完整的生命周期中通常要经历如下的五种状态:
新建(NEW)
: 当一个Thread类或其子类的对象被声明并创建时,新生的线程对象处于新建状态就绪(RUNNABLE)
: 处于新建状态的线程被start()后,将进入线程队列等待CPU时间片,此时它已具备了运行的条件,只是没分配到CPU资源运行(RUNNING)
: 当就绪的线程被调度并获得CPU资源时,便进入运行状态, run()方法定义了线程的操作和功能阻塞(BLOCKED/WAITING/TIMED_WAITING)
: 在某种特殊情况下,被人为挂起或执行输入输出操作时,让出 CPU并临时中止自己的执行,进入阻塞状态死亡(TERMINATED)
: 线程完成了它的全部工作或线程被提前强制性地中止或出现异常导致结束
四、线程的同步
模拟火车站售票程序,开启三个窗口售票。
不安全问题:sleep的方法,加大了三个窗口同时抢得一张票的概率,即重票错票问题。问题出现原因:当某个线程操作车票过程中,尚未操作完成时,其他线程也参与进来,操作车票。
public class Windowclass1 {
public static void main(String[] args) {
Window1 w1 = new Window1();
Thread t1 = new Thread(w1);
Thread t2 = new Thread(w1);
Thread t3 = new Thread(w1);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Window1 implements Runnable{
private int ticket=100;
@Override
public void run() {
while(true){
if(ticket>0){
try {
Thread.sleep(100);//静态方法
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+":卖票,票号为:"+ticket);
ticket--;
}else{
break;
}
}
}
}
1、多线程出现了安全问题
2、问题的原因:
- 当多条语句在操作同一个线程共享数据时,一个线程对多条语句只执行了一部分,还没有执行完,另一个线程参与进来执行。导致共享数据的错误。
3、解决办法:
- 对多条操作共享数据的语句,只能让一个线程都执行完,在执行过程中,其他线程不可以参与执行。
1、同步方式
Java对于多线程的安全问题提供了专业的解决方式: 同步机制
1、同步代码块:
synchronized (对象){
// 需要被同步的代码;
}
2、synchronized还可以放在方法声明中,表示整个方法为同步方法。
public synchronized void show (String name){
….
}
拓展理解:同步机制中的锁
1、同步锁机制:
在《Thinking in Java》 中, 是这么说的:对于并发工作, 你需要某种方式来防止两个任务访问相同的资源(其实就是共享资源竞争) 。 防止这种冲突的方法就是当资源被一个任务使用时, 在其上加锁。 第一个访问某项资源的任务必须锁定这项资源, 使其他任务在其被解锁之前, 就无法访问它了, 而在其被解锁之时, 另一个任务就可以锁定并使用它了。
2、synchronized的锁是什么?
任意对象都可以作为同步锁。 所有对象都自动含有单一的锁(监视器) 。
- 同步方法的锁:
静态方法(类名.class)
、非静态方法(this)
- 同步代码块:自己指定, 很多时候也是指定为this或类名
.class
注意:
- 必须确保使用同一个资源的多个线程共用一把锁, 这个非常重要, 否则就 这个非常重要, 否则就无法保证共享资源的安全
- 一个线程类中的所有静态方法共用同一把锁(类名.class) ,所有非静态方法共用同一把锁(this) , 同步代码块(指定需谨慎)
3、同步的范围
- 1、 如何找问题, 即代码是否存在线程安全? (非常重要)
- (1) 明确哪些代码是多线程运行的代码
- (2) 明确多个线程是否有共享数据
- (3) 明确多线程运行代码中是否有多条语句操作共享数据
- 2、 如何解决呢? (非常重要)
- 对多条操作共享数据的语句, 只能让一个线程都执行完, 在执行过程中, 其他线程不可以参与执行。
- 即所有操作共享数据的这些语句都要放在同步范围中
- 3、 切记:
- 范围太小:没锁住所有有安全问题的代码
- 范围太大:没发挥多线程的功能。
4、释放锁的操作
- 当前线程的同步方法、同步代码块执行结束。
- 当前线程在同步代码块、同步方法中遇到break、 return终止了该代码块、该方法的继续执行。
- 当前线程在同步代码块、同步方法中出现了未处理的Error或Exception, 导致异常结束。
- 当前线程在同步代码块、同步方法中执行了线程对象的wait()方法,当前线程暂停,并释放锁。
5、不会释放锁的操作
- 线程执行同步代码块或同步方法时,程序调用Thread.sleep()、**Thread.yield()**方法暂停当前线程的执行
- 线程执行同步代码块时,其他线程调用了该线程的suspend()方法将该线程挂起,该线程不会释放锁(同步监视器)。
- 应尽量避免使用suspend()和resume()来控制线程
1.1、同步代码块
synchronized(同步监视器){
//需要被同步的代码
}
说明:
- 1.需要操作对应共享数据的代码,即为需要被同步的代码
- 2.共享数据:多个线程共同操作的变量。比如:ticket
- 3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁 ,要求:
多个线程必须要共用同一把锁
- 4.在实现Runnable接口创建多线程的方式中,我们可以考虑使用
this
充当同步监视器。
Thread继承方式
public class Windowclass {
public static void main(String[] args) {
Window w1 = new Window();
Window w2 = new Window();
Window w3 = new Window();
w1.setName("窗口1");
w2.setName("窗口2");
w3.setName("窗口3");
w1.start();
w2.start();
w3.start();
}
}
class Window extends Thread{
private static int ticket=100;
private static Object obj=new Object();
@Override
public void run() {
while(true){
//synchronized (obj){
//慎用this充当同步监视器,考虑使用当前类充当同步监视器
//synchronized (this){//不唯一,w1,w2,w3三个对象
synchronized (Window.class){
//Class class=Window.class,只会加载一次
if(ticket>0){
System.out.println(getName()+":卖票,票号为:"+ticket);
ticket--;
}else{
break;
}
}
}
}
}
Runnable实现方式
public class Windowclass1 {
public static void main(String[] args) {
Window1 w1 = new Window1();
Thread t1 = new Thread(w1);
Thread t2 = new Thread(w1);
Thread t3 = new Thread(w1);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Window1 implements Runnable{
private int ticket=100;
Object obj=new Object();
@Override
public void run() {
while(true){
//synchronized (obj){
synchronized (this){//此时的this:唯一的window1的对象
if(ticket>0){
try {
Thread.sleep(100);//静态方法
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+":卖票,票号为:"+ticket);
ticket--;
}else{
break;
}
}
}
}
}
1.2、同步方法
- 1.同步方法仍然涉及到同步监视器,只是不需要我们显示的声明
- 2.非静态的同步方法:同步监视器:this
- 3.静态的同步方法,同步监视器是:当前类本身
Thread继承方式
public class Windowclass {
public static void main(String[] args) {
Window w1 = new Window();
Window w2 = new Window();
Window w3 = new Window();
w1.setName("窗口1");
w2.setName("窗口2");
w3.setName("窗口3");
w1.start();
w2.start();
w3.start();
}
}
class Window extends Thread{
private static int ticket=100;
private static Object obj=new Object();
@Override
public void run() {
while(ticket>0){
show();
}
}
public static synchronized void show(){//同步监视器Window.class
//public synchronized void show(){//同步监视器this:w1,w2,w3
if(ticket>0){
try {
Thread.sleep(100);//静态方法
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+":卖票,票号为:"+ticket);
ticket--;
}
}
}
Runnable实现方式
public class Windowclass1 {
public static void main(String[] args) {
Window1 w1 = new Window1();
Thread t1 = new Thread(w1);
Thread t2 = new Thread(w1);
Thread t3 = new Thread(w1);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Window1 implements Runnable{
private int ticket=100;
Object obj=new Object();
@Override
public void run() {
while(ticket>0){
show();
}
}
public synchronized void show(){//同步监视器this
if(ticket>0){
try {
Thread.sleep(100);//静态方法
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+":卖票,票号为:"+ticket);
ticket--;
}
}
//public synchronized void run() {
//synchronized(this){一个窗口一直取票
// while(true){
// if(ticket>0){
// try {
// Thread.sleep(100);//静态方法
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()+":卖票,票号为:"+ticket);
// ticket--;
// }else{
// break;
// }
// }
// }
}
优点:同步的方式,解决线程的安全问题
局限性:操作同步代码时,只能有一个线程参与,其他 线程等待。相当于是一个单线程的过程,效率低
2、同步方法的应用——单例模式
单例设计模式之懒汉式(线程安全)
class Singleton {
private static Singleton instance = null;
private Singleton(){}
public static Singleton getInstance(){
if(instance==null){
synchronized(Singleton.class){
if(instance == null){
instance=new Singleton();
}
}
}
return instance;
}
}
public class SingletonTest{
public static void main(String[] args){
Singleton s1=Singleton.getInstance();
Singleton s2=Singleton.getInstance();
System.out尚硅谷_Java零基础教程(异常处理)-- 学习笔记
尚硅谷_Java零基础教程(常用类——String)-- 学习笔记
尚硅谷_Java零基础教程(泛型generics)-- 学习笔记
尚硅谷_Java零基础教程(集合Collection:list,set;map)-- 学习笔记