[数值计算-12]:什么是函数逼近:插值与拟合

Posted 文火冰糖的硅基工坊

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[数值计算-12]:什么是函数逼近:插值与拟合相关的知识,希望对你有一定的参考价值。

作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing

本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119901220


目录

第1章 什么是函数逼近?

1.1 抛出问题1:函数插值

1.2  抛出问题2:函数逼近

第2章 函数逼近的基本方法

2.1 插值法求插值函数

2.2 拟合法求拟合函数

第3章 用于函数逼近的常见函数类型

3.1 一元函数

3.2 多元函数

3.3 复合函数




第1章 什么是函数逼近?

1.1 抛出问题1:函数插值

利用有限的样本数据,发现其内在的规律,并用这个规律预测未来新的数据。

(1)单个数据点

  • 0次函数通过样本点:唯一确定一个点 y = f(x) = a0
  • 1次直线函数通过样本点:可以有无数 y = f(x) = a1x + a0
  • 2次抛物线函数通过样本点:可以有无数 y = f(x) = a1x^2 + a1x + a0

(2)2个数据点

  • 0次函数通过样本点:无
  • 1次直线函数通过样本点:唯一直线 y = f(x) = a1x + a0
  • 2次抛物线函数通过样本点:可以有无数 y = f(x) = a1x^2 + a1x + a0

(3)3个数据点

  • 0次函数通过样本点:无
  • 1次直线函数通过样本点:无
  • 2次抛物线函数通过样本点:唯一抛物线y = f(x) = a1x^2 + a1x + a0

问题:

如果有(xn+1,yn+1), (xn,yn)........(x1,y1), (x0,y0)样本点,那么如何选择一个最低次的多项式函数,可以穿过上述样本点?

推测:

对应n+1个点,可以唯一的确定一个一元n次的多项式函数,该多项式函数可以穿越所有n+1个点。

1.2  抛出问题2:函数逼近

如果有n个点,不要求选出的函数穿越所有的点,而是根据这些点构建的轮廓,选择一个更低维度(次数)的函数尽可能的靠近这些样本点呢?

 当函数的次数远远小于样本点的次数是,该如何选择低次的函数?

第2章 函数逼近的基本方法

2.1 插值法求插值函数

  • 插值函数穿过所有的样本点

  • 插值函数的次数 >= 样本点个数N再减1,即至少为N-1次。

2.2 拟合法求拟合函数

  • 拟合函数不会穿过所有的样本点

  • 拟合函数的次数远远小于样本点个数

第3章 用于函数逼近的常见函数类型

3.1 一元函数

一元函数是指函数方程式中只包含一个自变量。例如y=F(x)。与一元函数对应的为多元函数,顾名思义函数方程中包含多个自变量。在工科数学基础分析中:设A,B是两个非空的实数集,则称映射f:A→B为定义在A上的一元函数,简称函数。

  • 一元线性函数y = ax + b
  • 一元多项式函数y = an*X^n + an-1*X^(n-1) + .... a1*X^1 + a0
  • 一元三角函数
  • 一元指数函数

3.2 多元函数

设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。

记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量

当n=1时,为一元函数,记为y=f(x),x∈D,当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D。二元及以上的函数统称为多元函数。

3.3 复合函数

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。


作者主页(文火冰糖的硅基工坊):https://blog.csdn.net/HiWangWenBing

本文网址:https://blog.csdn.net/HiWangWenBing/article/details/119901220

以上是关于[数值计算-12]:什么是函数逼近:插值与拟合的主要内容,如果未能解决你的问题,请参考以下文章

[数值计算-17]:最小二乘法的求解2- 链式求导与多元线性方程组求解

Python数学建模系列:数值逼近

数值分析----几种常见插值运算

数值分析----几种常见插值运算

[数值计算-16]:最小二乘法求的解法1 - 一元2次方程解析法求解

C#,码海拾贝(06)——连分式(Continued Fraction)曲线插值算法,《C#数值计算算法编程》源代码升级改进版