(Python)numpy的argmax用法
Posted 浩瀚之水_csdn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(Python)numpy的argmax用法相关的知识,希望对你有一定的参考价值。
解释
还是从一维数组出发.看下面的例子.
import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))
4
argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=0))
[1,2,2,1]
为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是
a[0][j],
a[1][j],
a[2][j]
(j=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[1][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.
import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=1))
[1,0,2]
np.argmax(a, axis=1)的含义是
a[i][0],a[i][1],a[i][2],a[i][3]
(i=0,1,2)中最大值的索引.(每1行的最大索引)
从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)
再看三维的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=0))
[[0 0 0 0]
[0 1 0 0]
[1 0 1 0]]
np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.
从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.
import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
],
[
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=1))
[[1 2 0 1]
[1 2 2 1]]
np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k],a[i][2][k] (i=0,1,k=0,1,2,3)中最大值的索引.(每1列的最大索引)
从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).
再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.
以上是关于(Python)numpy的argmax用法的主要内容,如果未能解决你的问题,请参考以下文章
python numpy maxpool:给定一个数组和来自argmax的索引,返回最大值
numpy使用np.argmax函数获取一维数组中最大值所在的索引(index of largest value in numpy array with np.argmax)