超详细!从HashMap到ConcurrentMap,我是如何一步步实现线程安全的!

Posted id10t.

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了超详细!从HashMap到ConcurrentMap,我是如何一步步实现线程安全的!相关的知识,希望对你有一定的参考价值。

声明

1)该文章部分内容整理自网上的资料,如不小心侵犯了大家的权益,还望海涵,并联系博主删除。

2)博主是萌新上路,文中如有不当之处,请各位大佬指出,共同进步,谢谢。
 

前言

看懂这篇博文,再也不怕面试被问到 HashMap 了!
 

什么是HashMap?

在了解 HashMap 之前先了解一下什么是 Map

 

什么是Map?

定义

Map 是一个用于存储 Key-Value 键值对的集合类,也就是一组键值对的映射,在 Java 中 Map 是一个接口,是和 Collection 接口同一等级的集合根接口;

存储结构

上图看起来像是数据库中的关系表,有类似的两个字段,KeySet(键的集合)和 Values(值的集合),每一个键值对都是一个 Entry

特点

  1. 没有重复的 key;

    • key 用 set 保存,所以 key 必须唯一;

    • Map 基本上是通过 key 来获取 value,如果有两个相同的 key,计算机将不知道取哪个值,如果 put 了两个相同的 key,后一个则会覆盖前一个的 value 值;在源码的注释中已经说明:

      大致翻译一下:

      将该 map 中的指定值与指定键关联(可选操作)。如果映射先前包含键的映射,则旧值将被指定的值替换。(当且仅当 {@link #containsKey(Object) m.containsKey(k)} 返回 true 时,映射 m 被称为包含键k的映射。)

  2. 每个 key 只能对应一个 value,多个 key 可以对应一个 value(这就是映射的概念,最经典的例子就是射箭,一排的射手和一排的箭靶,每个射手只有一根箭,那么一个射手只能射中一个箭靶,而每个箭靶可能被不同射手射中,箭就是映射);

  3. key,value 都可以是任何引用类型的数据,包括 null,但只能是引用类型;

  4. Map 取代了古老的 Dictionary 抽象类(简单了解一下);

 

HashMap定义

把任意长度的输入(预映射),通过一种函数 hashCode(),变换成固定长度的输出,该输出就是哈希值 hashCode,这种函数就叫做哈希函数,而计算哈希值的过程就叫做哈希

哈希的主要应用是哈希表和分布式缓存,注意,哈希算法和哈希函数不是一个东西,哈希函数是哈希算法的一种实现;

HashMap 是用哈希表(数组(桶)加单链表)+ 红黑树实现的 map 类,但是不同版本的 JDK 实现 HashMap 的原理有所不同:

  • JDK 1.6 - 1.7 采用位桶 + 链表实现;
  • JDK 1.8 采用位桶 + 链表 + 红黑树实现,当链表长度超过阈值 “8” 时,将链表转换为红黑树

下面以 JDK 1.8 为版本进行讲解;
 

HashMap底层原理

体系结构

HashMap 是一个用于存储 Key-Value 键值对的集合,每一个键值对也叫做 Entry。HashMap 新增一个元素时,会先计算 key 的 hash 值,找到存入数组(桶)的位置,如果该位置已经有节点(链表头),则存入该节点的最后一个位置(链表尾),所以 HashMap 就是一个数组(桶),数组上每一个元素都是一个节点(节点和所有下一个节点组成一个链表)或者为 nullHashMap 数组每一个元素的初始值都是 null),显然同一个链表上的节点 hash 值都一样。

源码解读

首先看到的是 HashMap 的构造器:

/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

注释中已经说得很清楚了,Constructs an empty <tt>HashMap</tt> with the specified initial capacity and load factor.,这个构造器主要是用来初始化桶的数量和装载因子;

接下来往前看,看一下几个比较重要的常量,DEFAULT_INITIAL_CAPACITYMAXIMUM_CAPACITYDEFAULT_LOAD_FACTOR

可以看到桶的初始容量默认为16,值得注意的是,桶的初始容量和扩容后的容量必须是 2n,所以桶的最大容量就是230,即 1 << 30

默认负载系数为 0.75,负载系数也称为负载因子,是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。经过大量的实验证明, HashMap 的默认负载因子为0.75最宜;

当表中超过75%的位置已经填入元素,这个表就会用双倍的桶数自动地进行再散列(rehashed),可以通过构造函数初始化;

这里进行扩展一下,便于理解:


由于 HashMap 特殊的存储结构,因此 HashMap 在获取指定元素前需要把 key 经过哈希运算,得到目标元素在哈希表中的位置,然后再进行少量比较即可得到元素,这使得 HashMap 的查找效率极高,说白了就是 HashMap 用了拉链法的哈希表,也有称之为桶数组的;

下面看到 JDK 1.8 中的源码部分:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}


/**
 * Implements Map.put and related methods.
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {}

/**
 * Computes key.hashCode() and spreads (XORs) higher bits of hash
 * to lower.  Because the table uses power-of-two masking, sets of
 * hashes that vary only in bits above the current mask will
 * always collide. (Among known examples are sets of Float keys
 * holding consecutive whole numbers in small tables.)  So we
 * apply a transform that spreads the impact of higher bits
 * downward. There is a tradeoff between speed, utility, and
 * quality of bit-spreading. Because many common sets of hashes
 * are already reasonably distributed (so don't benefit from
 * spreading), and because we use trees to handle large sets of
 * collisions in bins, we just XOR some shifted bits in the
 * cheapest possible way to reduce systematic lossage, as well as
 * to incorporate impact of the highest bits that would otherwise
 * never be used in index calculations because of table bounds.
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

当我们通过 put() 方法输入键值对后,虽然我们只输入了键值对,但他却传递了五个参数,源码注释已经很清楚了,就不多解释了,接下来看到 hash 算法,将键 key 传入,如果 key 为 null,则返回值值为0;否则返回 key 的哈希值与 key 无符号右移16位(h >>> 16)后进行异或的结果;源码注释解释了为什么要进行这样的操作,主要是为了减少冲突,较低系统消耗;

哈希函数计算结果越分散均匀,哈希碰撞的概率就越小,map 的存取效率就会越高,即时间复杂度越小;

哈希表长度越长,空间成本越大,哈希函数计算结果越分散均匀;

扩容机制(实际上就是负载因子)和哈希函数越合理,空间成本越小,哈希函数计算结果越分散均匀;

从 HashMap 的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化。

int threshold;             // 最大node结点(键值对)容量,threshold = CAPACITY * LoadFactor,超过这个数目就重新resize(扩容),扩容后的threshold是之前的两倍。
final float loadFactor;    // 加载因子(HashMap默认值是0.75,建议不要修改)
int modCount;              // 记录HashMap内部结构发生变化的次数,强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。
int size,CAPACITY;      // CAPACITY是桶数组的容量(桶的多少)(默认值是16),扩容后也是之前的两倍,size是HashMap中实际存在的键值对数量
  • 负载因子越大(长度一定),最大结点容量越大,resize 次数越少,空间成本越小,map 的存取效率就会越高。
  • 桶数组初始容量(长度)越大(加载因子一定),最大结点容量越大,resize 次数越少,空间成本越大,map的 存取效率就会越高。

这里存在一个问题,即使负载因子和哈希函数设计的再合理,也难免会出现拉链过长的情况,即桶内结点过多;

一旦出现拉链过长,则会严重影响 HashMap 的性能。于是在 JDK1.8 版本中,对数据结构做了进一步的优化,引入了红黑树,而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高 HashMap 的性能


对于 HashMap,我们最常使用的是两个方法:Get()Put()
 

Put方法的原理

调用 put() 方法会发生了什么呢?其实上面已经提到过来,那这里就简单的介绍一下:

首先是输入键值对,hashmap.put("idiot",1),这是会调用 hash() 函数来计算这个键值对(Entry)插入的位置,index = hash("idiot"),假定最后计算出的 index 是2,那么结果如下:

但是 HashMap 的长度是有限的,当插入的 Entry 越来越多时,再完美的 Hash 函数也难免会出 现index 冲突的情况。比如下面这样:

那该如何解决?利用链表来解决,将哈希值相同的键组成一个链表,每一个 Entry 对象通过 Next 指针指向它的下一个 Entry 节点,桶中装着每个链表的头结点。当新来的 Entry 映射到冲突的数组位置时,只需要插入到对应的链表即可:

需要注意的是,上图使用的是“头插法”,但 JDK1.8 的源码中使用的是“尾插法”;

源码解读

put() 方法返回了 putVal() 方法的值,那么接下来就探究 putVal() 方法:

/**
 * Implements Map.put and related methods.
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

注释已经解释了参数的意义,直接开始探究代码:

1、这里判断哈希表是否为空,然后进行一个扩容;

if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;

resize() 就是初始化或者加倍哈希表的大小;


2、判断桶是否有该元素,没有的话实例化一个;

if ((p = tab[i = (n - 1) & hash]) == null)
    tab[i] = newNode(hash, key, value, null);

(n - 1) & hash 相当于对将 hash % n,根据 hash 得到桶的索引,


3、桶内存在元素,需要解决 hash 冲突;

3.1、桶内第一个元素的 key 值与新加入的键值对的 key 相同的时候,e 指向 p(仅仅指向);

if (p.hash == hash &&
    ((k = p.key) == key || (key != null && key.equals(k))))
    e = p;

3.2、如果元素已经树化,使用 putTreeVal() 方法加入元素,若存在相同的 key 的元素,则将引用返回;

else if (p instanceof TreeNode)
    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);


3.3、遍历链表,使用尾插法插入元素,如果链表长度超过8(默认长度),则链表转换为红黑树;

else {
	//如果桶内是链表,则插入链表,这里使用尾插法
    for (int binCount = 0; ; ++binCount) {
        if ((e = p.next) == null) {
            p.next = newNode(hash, key, value, null);
            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
            	//bitCount大于树化的阈值,转化为红黑树
                treeifyBin(tab, hash);
            break;
        }
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            break;
        p = e;
    }
}

4、e != null 的时候,将 e.value 作为旧值进行返回;

if (e != null) { // existing mapping for key
    V oldValue = e.value;
    //putVal中的参数。若onlyIfAbsent为null或者oldValue为空时才替换,
    if (!onlyIfAbsent || oldValue == null)
        e.value = value;
    afterNodeAccess(e);
    return oldValue;
}

如果 e == null,则表示插入了新节点,在上面3.3的代码中表示过了;


5、当桶的容积不够时,使用 resize() 进行扩容;

if (++size > threshold)
    resize();

put() 方法主要就是上面的一些解读,接下来来探究 get() 方法;
 

Get方法的原理

使用 get() 方法根据 Key 来查找 Value 是怎么实现的呢?下面就简单介绍一下:

首先会把输入的 Key 做一次 Hash 映射,得到对应的index:index = hash("idiot")

由于存在 Hash 冲突,因此同一个位置有可能匹配到多个 Entry,这时候就需要顺着对应链表的头节点,一个一个向下来查找。假设我们要查找的 Key 是 “idiot”:

第一步,我们查看的是头节点 Entry6,Entry6 的 Key 是 Syyyy,显然不是我们要找的结果。

第二步,我们查看的是 Next 节点 Entry1,Entry1 的 Key 是 idiot,正是我们要找的结果。

这里使用“头插法”是因为部分人认为后插入的 Entry 被查找的可能性更大,以此来提高查找效率。
 

源码解读

先看到的是 get() 方法,只有短短的两行代码:

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * <p>More formally, if this map contains a mapping from a key
 * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 * key.equals(k))}, then this method returns {@code v}; otherwise
 * it returns {@code null}.  (There can be at most one such mapping.)
 *
 * <p>A return value of {@code null} does not <i>necessarily</i>
 * indicate that the map contains no mapping for the key; it's also
 * possible that the map explicitly maps the key to {@code null}.
 * The {@link #containsKey containsKey} operation may be used to
 * distinguish these two cases.
 *
 * @see #put(Object, Object)
 */
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

其实注释已经很清楚的进行了解释,该方法要么返回节点的值 e.value,要么返回 null;但要注意的是,返回值为 null 并不一定表明映射不包含键的映射;也有可能映射显式地将键映射为 null 。可以使用 containsKey 操作来区分这两种情况;

接下来就来看看 getNode() 方法,跟 putVal() 方法其实是比较对称的,那就直接在代码中写注释了:

/**
 * Implements Map.get and related methods.
 *
 * @param hash hash for key
 * @param key the key
 * @return the node, or null if none
 */
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

    //判断哈希表是否为空,头节点是否存在;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {

        //对比头节点,如果hash值相同且key相同(地址或内容),则返回该节点;
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;

        //判断下一个节点是否存在
        if ((e = first.next) != null) {

            //判断是否链表是否树化,如果树化则遍历树节点来进行查找;
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);

            //不是树化则按照链表进行遍历;
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }

    //没有相符合的key,返回null值;
    return null;
}

顺带提一下刚刚注释里出现的 containsKey() 方法:

/**
 * Returns <tt>true</tt> if this map contains a mapping for the
 * specified key.
 *
 * @param   key   The key whose presence in this map is to be tested
 * @return <tt>true</tt> if this map contains a mapping for the specified
 * key.
 */
public boolean containsKey(Object key) {
    return getNode(hash(key), key) != null;
}

只要就是调用 getNode() 方法来获取键值对,如果没有找到返回 false,找到了就返回 ture;
 

补充

思考:为什么 HashMap 的初始长度默认为16,之后扩展也要是2的幂?

这主要是为了服务于从 KEY 映射到 index 的 Hash 算法,使其尽可能的均匀分布;

那是不是吧 KEY 的 HashCode 值和 HashMap 长度做取模运算?index = Key.hashCode() % Length

错!取模运算的方式固然简单,但是效率太低,因此采用了位运算的方式,index = Key.hashCode() % (Length-1)

下面以 “idiot” 为 KEY 演示整个过程:

  1. 显示计算 idiot 的 hashCode,这里是 JDK1.8 版本的:

    String key = "idiot";
    System.out.println(key.hashCode());
    

    结果为100053267,转换成二进制就是101111101101011000100010011;

  2. HashMap 长度是默认的16,计算 Length-1 的结果为15,转成二进制就是1111;

  3. 把以上两个结果做与运算,101111101101011000100010011 & 1111 = 0011,十进制就是3,所以 index=3;

可以说 Hash 算法最终得到的 index 结果,完全取决于 Key 的 Hashcode 值的最后几位;

那这样子有什么好处呢?为什么长度必须是2的幂,如果长度是10会怎么样?

这样子做不但效果同等于取模,而且性能上还有大大的提升,接下来我们尝试一下长度为10会出现什么情况;

101111101101011000100010011 & 1001 = 0001,十进制就是1,所以 index=1

这样咋一看好像没什么问题,但如果说现在把 hashCode 101111101101011000100010011 的最后四位从0011改成0110,结果还是一样的,还是 index=1这说明当 HashMap 长度为10的时候,有些 index 结果的出现几率会更大,而有些 index 结果永远不会出现(比如0110,0111)!

反观长度16或者其他2的幂,Length-1 的值是所有二进制位全为1,这种情况下,index 的结果等同于 HashCode 后几位的值。只要输入的 HashCode 本身分布均匀,Hash 算法的结果就是均匀的。
 

高并发下的HashMap

先简单讲讲单线程下的 HashMap;

HashMap 的容量是有限的,当经过多次元素插入,使得 HashMap 达到一定饱和度时,Key 映射位置发生冲突的几率会逐渐提高。

这时候,HashMap 需要扩展它的长度,也就是进行 Resize()


 

影响因素

影响发生 Resize() 的因素有两个:

  1. Capacity

    HashMap 的当前长度,2的幂,static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

  2. LoadFactor

    HashMap 负载因子,默认值为 0.75fstatic final float DEFAULT_LOAD_FACTOR = 0.75f;

衡量 HashMap 是否进行 Resize() 的条件如下:

HashMap.Size >= Capacity * LoadFactor;

当然 Resize() 并不是简单地把长度扩大了,而是经过了以下两个步骤:

  1. 扩容

    创建一个新的 Entry 空数组,长度是原数组的2倍;

  2. ReHash

    遍历原 Entry 数组,把所有的 Entry 重新 Hash 到新数组。

 
为什么要重新 Hash 呢?因为长度扩大以后,Hash 的规

以上是关于超详细!从HashMap到ConcurrentMap,我是如何一步步实现线程安全的!的主要内容,如果未能解决你的问题,请参考以下文章

HashMap底层源码解析下(超详细图解)

HashMap底层红黑树原理(超详细图解)+手写红黑树代码

webpack从0到1超详细超基础学习教程

超详细Apache Durid从入门到安装详细教程

MemCache超详细解读

Nginx从理论到实践超详细笔记