Python基础入门自学——22--异步IO

Posted kaoa000

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python基础入门自学——22--异步IO相关的知识,希望对你有一定的参考价值。

CPU的速度远远快于磁盘、网络等IO。在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件、发送网络数据时,就需要等待IO操作完成,才能继续进行下一步操作。这种情况称为同步IO。

在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了。

因为一个IO操作就阻塞了当前线程,导致其他代码无法执行,所以必须使用多线程或者多进程来并发执行代码,为多个用户服务。每个用户都会分配一个线程,如果遇到IO导致线程被挂起,其他用户的线程不受影响。

多线程和多进程的模型虽然解决了并发问题,但是系统不能无上限地增加线程。由于系统切换线程的开销也很大,所以,一旦线程数量过多,CPU的时间就花在线程切换上了,真正运行代码的时间就少了,结果导致性能严重下降。

要解决CPU高速执行能力和IO设备的龟速严重不匹配,多线程和多进程只是解决这一问题的一种方法。

另一种解决IO问题的方法是异步IO。当代码需要执行一个耗时的IO操作时,它只发出IO指令,并不等待IO结果,然后就去执行其他代码了。一段时间后,当IO返回结果时,再通知CPU进行处理。

按普通顺序写出的代码实际上是没法完成异步IO的:

do_some_code()
f = open('/path/to/file', 'r')
r = f.read() # <== 线程停在此处等待IO操作结果
# IO操作完成后线程才能继续执行:
do_some_code(r)

以上是同步IO模型的代码,无法实现异步IO模型。

异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程:

loop = get_event_loop()
while True:
    event = loop.get_event()
    process_event(event)
消息模型其实早应用在桌面应用程序中了。一个GUI程序的主线程就负责不停地读取消息并处理消息。所有的键盘、鼠标等消息都被发送到GUI程序的消息队列中,然后由GUI程序的主线程处理。

由于GUI线程处理键盘、鼠标等消息的速度非常快,所以用户感觉不到延迟。某些时候,GUI线程在一个消息处理的过程中遇到问题导致一次消息处理时间过长,此时,用户会感觉到整个GUI程序停止响应了,敲键盘、点鼠标都没有反应。这种情况说明在消息模型中,处理一个消息必须非常迅速,否则,主线程将无法及时处理消息队列中的其他消息,导致程序看上去停止响应。

消息模型是如何解决同步IO必须等待IO操作这一问题的呢?当遇到IO操作时,代码只负责发出IO请求,不等待IO结果,然后直接结束本轮消息处理,进入下一轮消息处理过程。当IO操作完成后,将收到一条“IO完成”的消息,处理该消息时就可以直接获取IO操作结果。

在“发出IO请求”到收到“IO完成”的这段时间里,同步IO模型下,主线程只能挂起,但异步IO模型下,主线程并没有休息,而是在消息循环中继续处理其他消息。这样,在异步IO模型下,一个线程就可以同时处理多个IO请求,并且没有切换线程的操作。对于大多数IO密集型的应用程序,使用异步IO将大大提升系统的多任务处理能力。

对同步异步、阻塞非阻塞的形象解释:

# 真正意义上的 异步IO 是说内核直接将数据拷贝至用户态的内存单元,再通知程序直接去读取数据。
# select / poll / epoll 都是同步IO的多路复用模式

# 1.同步和异步
# 同步和异步关注的是消息通信机制
# 所谓同步,就是在发出一个*调用*时,没得到结果之前,该*调用*就不返回。但是一旦调用返回就得到返回值了,*调用者*主动等待这个*调用*的结果
# 所谓异步,就是在发出一个*调用*时,这个*调用*就直接返回了,不管返回有没有结果。当一个异步过程调用发出后,*被调用者*通过状态,通知来通知*调用者*,或者通过回调函数处理这个调用

# 2.阻塞和非阻塞
# 阻塞和非阻塞关注的是程序在等待调用结果时的状态
# 阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才返回
# 非阻塞调用是指在不能立即得到结果之前,该调用不会阻塞当前线程

# 网络上的例子
#老张爱喝茶,废话不说,煮开水。
#出场人物:老张,水壶两把(普通水壶,简称水壶;会响的水壶,简称响水壶)。
#1 老张把水壶放到火上,立等水开。(同步阻塞);立等就是阻塞了老张去干别的事,老张得一直主动的看着水开没,这就是同步
#2 老张把水壶放到火上,去客厅看电视,时不时去厨房看看水开没有。(同步非阻塞);老张去看电视了,这就是非阻塞了,但是老张还是得关注着水开没,这也就是同步了
#3 老张把响水壶放到火上,立等水开。(异步阻塞);立等就是阻塞了老张去干别的事,但是老张不用时刻关注水开没,因为水开了,响水壶会提醒他,这就是异步了
#4 老张把响水壶放到火上,去客厅看电视,水壶响之前不再去看它了,响了再去拿壶。(异步非阻塞);老张去看电视了,这就是非阻塞了,而且,等水开了,响水壶会提醒他,这就是异步了
#所谓同步异步,只是对于水壶而言。普通水壶,同步;响水壶,异步。对应的也就是消息通信机制
#虽然都能干活,但响水壶可以在自己完工之后,提示老张水开了。这是普通水壶所不能及的。同步只能让调用者去轮询自己(情况2中),造成老张效率的低下。
#所谓阻塞非阻塞,仅仅对于老张而言。立等的老张,阻塞;对应的也就是程序等待结果时的状态
#看电视的老张,非阻塞。
#情况1和情况3中老张就是阻塞的,媳妇喊他都不知道。虽然3中响水壶是异步的,可对于立等的老张没有太大的意义。所以一般异步是配合非阻塞使用的,这样才能发挥异步的效用。

协程

协程,又称微线程,纤程。英文名Coroutine。

子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。

子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。

协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。

注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:

def A():
    print('1')
    print('2')
    print('3')

def B():
    print('x')
    print('y')
    print('z')
假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:
1
2
x
y
3
z
但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。

看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,和多线程比,协程优势:

最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。

第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。

Python对协程的支持是通过generator实现的。

在generator中,不但可以通过for循环来迭代,还可以不断调用next()函数获取由yield语句返回的下一个值。

但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。

例子:传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。

如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:

 这里要对生成器的send()方法做进一步的了解:send(v)中的v,等价于“yield 表达式”的值,最终赋值给前面的变量,这里n = yield r,就是v赋值给n,当第一次调用send()时,因为还没有执行生成器,所以还没有n这个变量,所以是无法赋值的,所以第一次调用send(),其参数为None,返回值为第一次yield后的表达式的值。

分析运行过程:c = consumer()将产生一个生成器对象c,只是生成,没有运行。然后是produce(c),运行produce函数,这个函数第一步执行c.send(None),则,生成器对象c开始运行,先是r='',然后是yield r,到这里就停止,所以c.send(none)的值就是此时r的值,即'',空字符串,然后返回produce函数,继续运行n=0,然后进入循环,n = n + 1,此时,n变为1,执行print('[PRODUCER] Producing %s...' % n),说明生产者产生了一个资源1,然后是r = c.send(n),消费者开始消费这个n,此时n=1,c接着上次停止的地方运行,即n = 1,这里的n是消费者中的n,说明消费者获得资源1,然后是判断,因为资源不为空,即not n为假,执行print('[CONSUMER] Consuming %s...' % n),即进行消费,消费完之后,将r设置为‘200 OK’,程序又回到循环的开始,执行yield r,返回r的值,即‘200 OK’,停止,这时,在produce()中,r = c.send(n),此时r为 c.send(n)的返回值,即c中的yield r中的r值,即‘200 OK’,然后produce继续执行print('[PRODUCER] Consumer return: %s' % r),打印消费者的状态,然后生产者进行下一次循环。因为生产者和消费者使用了相同的变量r和n,要区分开这些变量。

consumer函数是一个generator,把一个consumer传入produce后:
首先调用c.send(None)启动生成器;
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
consumer通过yield拿到消息,处理,又通过yield把结果传回;
produce拿到consumer处理的结果,继续生产下一条消息;
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。Donald Knuth的一句话总结协程的特点:

“子程序就是协程的一种特例。”

asyncio

asyncio是Python 引入的标准库,直接内置了对异步IO的支持。

asyncio的编程模型就是一个消息循环。从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。

用asyncio实现Hello world代码:(注意,这时3.4版本的语法)

import asyncio

@asyncio.coroutine
def hello():
    print("Hello world!")
    # 异步调用asyncio.sleep(1):
    r = yield from asyncio.sleep(1)
    print("Hello again!")

# 获取EventLoop:
loop = asyncio.get_event_loop()
# 执行coroutine
loop.run_until_complete(hello())
loop.close()
@asyncio.coroutine把一个generator标记为coroutine类型,然后,我们就把这个coroutine扔到EventLoop中执行。

hello()会首先打印出Hello world!,然后,yield from语法可以让我们方便地调用另一个generator。由于asyncio.sleep()也是一个coroutine,所以线程不会等待asyncio.sleep(),而是直接中断并执行下一个消息循环。当asyncio.sleep()返回时,线程就可以从yield from拿到返回值(此处是None),然后接着执行下一行语句。

把asyncio.sleep(1)看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop中其他可以执行的coroutine了,因此可以实现并发执行。

用Task封装两个coroutine试试:

import threading
import asyncio

@asyncio.coroutine
def hello():
    print('Hello world! (%s)' % threading.currentThread())
    yield from asyncio.sleep(1)
    print('Hello again! (%s)' % threading.currentThread())

loop = asyncio.get_event_loop()
tasks = [hello(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
观察执行过程:

Hello world! (<_MainThread(MainThread, started 140735195337472)>)
Hello world! (<_MainThread(MainThread, started 140735195337472)>)
(暂停约1秒)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)
Hello again! (<_MainThread(MainThread, started 140735195337472)>)
由打印的当前线程名称可以看出,两个coroutine是由同一个线程并发执行的。

如果把asyncio.sleep()换成真正的IO操作,则多个coroutine就可以由一个线程并发执行。

用asyncio的异步网络连接来获取sina、sohu和163的网站首页:

import asyncio

@asyncio.coroutine
def wget(host):
    print('wget %s...' % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = yield from connect
    header = 'GET / HTTP/1.0\\r\\nHost: %s\\r\\n\\r\\n' % host
    writer.write(header.encode('utf-8'))
    yield from writer.drain()
    while True:
        line = yield from reader.readline()
        if line == b'\\r\\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    # Ignore the body, close the socket
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
执行结果如下:

wget www.sohu.com...
wget www.sina.com.cn...
wget www.163.com...
(等待一段时间)
(打印出sohu的header)
www.sohu.com header > HTTP/1.1 200 OK
www.sohu.com header > Content-Type: text/html
...
(打印出sina的header)
www.sina.com.cn header > HTTP/1.1 200 OK
www.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT
...
(打印出163的header)
www.163.com header > HTTP/1.0 302 Moved Temporarily
www.163.com header > Server: Cdn Cache Server V2.0
...
可见3个连接由一个线程通过coroutine并发完成。

asyncio提供了完善的异步IO支持;异步操作需要在coroutine中通过yield from完成;多个coroutine可以封装成一组Task然后并发执行

async/await

用asyncio提供的@asyncio.coroutine可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from调用另一个coroutine实现异步操作。

为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。注意,async和await是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:

把@asyncio.coroutine替换为async;
把yield from替换为await。

 上面运行结果:

 aiohttp

asyncio可以实现单线程并发IO操作。如果仅用在客户端,发挥的威力不大。如果把asyncio用在服务器端,例如Web服务器,由于HTTP连接就是IO操作,因此可以用单线程+coroutine实现多用户的高并发支持。

asyncio实现了TCP、UDP、SSL等协议,aiohttp则是基于asyncio实现的HTTP框架。

需要先安装aiohttp:

aiohttp的使用,以后再详细研究。

 

 

 

以上是关于Python基础入门自学——22--异步IO的主要内容,如果未能解决你的问题,请参考以下文章

Python自学入门学习基础之一: 列表和元组

Python自学入门基础教程-数据类型

Python自学从入门到就业之函数基础(小白必看)

Python入门自学进阶-Web框架——22DjangoAdmin项目应用-定制页面

零基础入门自学Python分为五个阶段

自学python需要安装什么软件-零基础入门Python怎么学习?老男孩python用什么软件...