机器学习数据预处理之缺失值:中位数填充
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习数据预处理之缺失值:中位数填充相关的知识,希望对你有一定的参考价值。
机器学习数据预处理之缺失值:中位数填充
garbage in, garbage out.
没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往缺失数据占有相当的比重。这时如果手工处理非常低效,如果舍弃缺失记录,则会丢失大量信息,使不完全观测数据与完全观测数据间产生系统差异,对这样的数据进行分析,你很可能会得出错误的结论。
中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
使用统计中位数进行数值填充:
df.median()
# 仿真数据集;
import numpy as np
import pandas as pd
# 构造数据
def dataset():
col1 = [1, 2, 3, 4, 5, 6, 7, 8, 9,10]
col2 = [3, 1, 7, np.nan, 4, 0, 5, 7, 12, np.nan]
col3 = [3, np.nan, np.nan, np.nan, 9, np.nan, 10, np.nan, 4, np.nan]
y = [10, 15, 8, 12, 17, 9, 7, 14,
以上是关于机器学习数据预处理之缺失值:中位数填充的主要内容,如果未能解决你的问题,请参考以下文章