力扣专题——“11. 盛最多水的容器”
Posted super尚
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了力扣专题——“11. 盛最多水的容器”相关的知识,希望对你有一定的参考价值。
题目:
- 盛最多水的容器
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
解题思路
采用双指针写法,从头尾两侧往中间检索。
每次取较小的一侧进行移动,在移动之前进行容积计算,与当前最大值比较,取较大的保存。
直到移动到left=right,结束。
返回容积。
注意:
移动最小的一侧可用下边这个式子理解,首先x为左侧高度,y为右侧高度,t为他们之间的距离
min(x,y)∗t=x∗t
容积的计算使用两边之中较小的一侧,所以假如x较小,那么移动大的一侧即y的话,会导致后边的容积永远不会大于x*t。而移动小的一侧则有机会大于当前容积。
代码
class Solution:
def maxArea(self, height: List[int]) -> int:
left,right,res=0,len(height)-1,0
while left<right:
if height[left]<height[right]:
res = max(res, (right-left) * height[left])
left+=1
else:
res=max(res, (right-left) * height[right])
right-=1
return res
以上是关于力扣专题——“11. 盛最多水的容器”的主要内容,如果未能解决你的问题,请参考以下文章
❤️思维导图整理大厂面试高频数组11: 盛最多水的容器的双指针的构想和证明+两点小优化,力扣11❤️