JUC-AQS源码分析

Posted 滑稽404#

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JUC-AQS源码分析相关的知识,希望对你有一定的参考价值。


前置知识

  • CAS
  • 可重入锁
  • LockSupport

一、介绍

队列同步器(AbstractQueuedSynchronizer)是用来构建锁和其他同步组件的基础框架,他使用一个int成员变量表示同步状态,通过内置的FIFO来完成资源获取线程的排队工作。CountDownLatch、CyclicBarrier、Semaphore等常用api,涉及到了锁的控制,都继承了AQS。

同步器使用的主要方法是继承,子类通过继承同步器并实现他的抽象方法来管理状态,在此过程中会控制状态的改变

二、AQS的重要元素

state:锁的占用状态码,0表示未被占用
head和tail表示AQS队列的头和尾
其中,还有静态内部类Node,用来封装线程

三、场景:

银行办理该业务的只有一个窗口(一把锁),来了三个客户A、B、C来办理该业务,A先来窗口给A办理业务(需要很长时间),所以B和C在银行安排的等待区等待A办理完

		ReentrantLock lock=new ReentrantLock();
        new Thread(()->{
            lock.lock();
            try {
                try {
                    TimeUnit.MINUTES.sleep(20);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            } finally {
                lock.unlock();
            }
        },"A").start();

        new Thread(()->{
            lock.lock();
            try {
              
            } finally {
                lock.unlock();
            }
        },"B").start();

        new Thread(()->{
            lock.lock();
            try {

            } finally {
                lock.unlock();
            }
        },"C").start();
	public void lock() {
        sync.lock();
    }

四、源码分析

用的是非公平锁的获取锁和释放锁进行分析

1、NonfairSync实现sync的lock方法

		final void lock() {
            if (compareAndSetState(0, 1))//如果锁未被占用,则更改占用状态1
                setExclusiveOwnerThread(Thread.currentThread());//将当前线程设置为占用线程
            else
                acquire(1);
        }

A第一次来窗口
compareAndSetState(0, 1),因为锁初始为未占用状态(state为0),比较相同后替换为1(表示锁被占用)
比较并替换成功执行setExclusiveOwnerThread(Thread.currentThread()),设置占用线程为当前线程(占用锁)
接着B来
compareAndSetState(0, 1),因为锁被占用,state为1,比较失败执行acquire(1)

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

1.1、NonfairSync实现AbstractQueuedSynchronizer的tryAcquire方法

		protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
		final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();//获取占用状态
            //针对可能A刚刚结束的情况
            if (c == 0) {//没有被占用,尝试获取锁
                if (compareAndSetState(0, acquires)) {//替换占用状态码
                    setExclusiveOwnerThread(current);//设置占用线程
                    return true;//获取成功返回,失败返回最底的false
                }
            }
            //已经被占用了,判断当前线程是否为锁占用线程
            //如果是的话,可重入
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;//累加
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);//设置占用状态码
                return true;
            }
            return false;
        }

非公平锁首先尝试获取锁
获取成功替换状态码和设置占用线程,并且返回true

    public final void acquire(int arg) {
    	//该条件直接结束
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

线程B尝试获取锁成功,直接退出

获取失败,判断当前线程是否为占用线程
如果是,可重入状态码累加
不是,返回false

1.2、acquire的下一条件acquireQueued(addWaiter(Node.EXCLUSIVE), arg)

如果尝试获取锁失败、可重入失败,判断下一条件acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
C也同样,因为是非公平锁,先尝试获取和判断可重入

	public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
1.2.1、AbstractQueuedSynchronizer的addWaiter方法
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

node封装B线程得B结点
Node pred = tail;当前AQS队列中为空
pred == null,所以执行enq(node),添加B结点

	private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

自旋
Node t = tail;获取尾结点为空,进入if,判断compareAndSetHead(new Node())

    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

比较AQS队列的头结点是否为空,是的话更新为new Node();
该结点为哨兵结点
比较并替换头结点成功,尾结点指向头结点

继续自旋
发现尾结点为哨兵结点,不为空,进入else

			else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }

node为B结点
B结点的前置指向尾结点(当前为哨兵)

compareAndSetTail(t, node)

	private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

比较尾结点是否为尾结点并替换为B结点

比较并替换成功t.next=node

C线程进入同样

最终返回哨兵结点并退出自旋

1.2.2、acquireQueued(addWaiter(Node.EXCLUSIVE), arg)

addWaiter传回哨兵结点,赋给node,arg为1

final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();//获取前置结点
                if (p == head && tryAcquire(arg)) {//是否为头结点,并尝试获取锁
                    setHead(node);//回收掉哨兵结点,然后将哨兵结点的下一节点更改为哨兵
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
		for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;

自旋
哨兵结点的前置结点为头结点,尝试获取锁成功就直接结束自旋,返回false

	public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

线程获取到锁直接结束
如果获取失败

1.2.2.1、shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt()

p为头结点,node为哨兵

	 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//获取等待码,结点都默认为0
        if (ws == Node.SIGNAL)//如果为等待资源-1
            return true;
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

结点waitStatus都默认为0,进入else执行compareAndSetWaitStatus(pred, ws, Node.SIGNAL);

    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                                        expect, update);
    }

比较是否为哨兵结点,并将waitStatus替换为Node.SIGNAL(等待资源码,表示进入阻塞)

比较并替换后,结果返回为false,if结束,继续自旋

		for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;

再次判断头结点和尝试获取锁
失败就继续shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt()

	 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//获取等待码,结点都默认为0
        if (ws == Node.SIGNAL)//如果为等待资源-1
            return true;
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

但是这次进入后,waitStatus已经改变为Node.SIGNAL,返回true,进入下一判断parkAndCheckInterrupt()

阻塞park等待
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

该方法正式将B线程阻塞,等待唤醒(unpark解除)或者中断,从park返回
如果没有唤醒,就一直在这等待

2、A线程执行完毕,释放锁

	lock.unlock();
    public void unlock() {
        sync.release(1);
    }
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

2.1、sync的tryRelease尝试释放

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;//占用状态码1-1=0
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);//释放成功,设置占用线程为空
            }
            setState(c);//并更改占用码为0(表示没有线程占用)
            return free;
        }

尝试释放
释放成功,设置占用线程未空,并更改占用码为0(表示没有线程占用锁)

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

尝试释放成功,继续执行
头结点为哨兵结点
哨兵结点waitStats=-1,执行unparkSuccessor(h)

private void unparkSuccessor(Node node) {

        int ws = node.waitStatus;//-1
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);//更改为0

        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

哨兵waitStatus=-1,比较并替换为0


Node s = node.next=B结点
B!=null,B.waitStatus=0

	if 以上是关于JUC-AQS源码分析的主要内容,如果未能解决你的问题,请参考以下文章

Android 插件化VirtualApp 源码分析 ( 目前的 API 现状 | 安装应用源码分析 | 安装按钮执行的操作 | 返回到 HomeActivity 执行的操作 )(代码片段

Android 逆向整体加固脱壳 ( DEX 优化流程分析 | DexPrepare.cpp 中 dvmOptimizeDexFile() 方法分析 | /bin/dexopt 源码分析 )(代码片段

Android 事件分发事件分发源码分析 ( Activity 中各层级的事件传递 | Activity -> PhoneWindow -> DecorView -> ViewGroup )(代码片段

《Docker 源码分析》全球首发啦!

mysql jdbc源码分析片段 和 Tomcat's JDBC Pool

Android 逆向ART 脱壳 ( DexClassLoader 脱壳 | DexClassLoader 构造函数 | 参考 Dalvik 的 DexClassLoader 类加载流程 )(代码片段