超硬核!Evidently 创建的机器学习模型仪表板真棒!

Posted Python学习与数据挖掘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了超硬核!Evidently 创建的机器学习模型仪表板真棒!相关的知识,希望对你有一定的参考价值。

欢迎关注 ,专注Python、数据分析、数据挖掘、好玩工具!

解释机器学习模型是一个困难的过程,因为通常大多数模型都是一个黑匣子,我们不知道模型内部发生了什么。创建不同类型的可视化有助于理解模型是如何执行的,但是很少有库可以用来解释模型是如何工作的。

Evidently 是一个开源 Python 库,用于创建交互式可视化报告、仪表板和 JSON 配置文件,有助于在验证和预测期间分析机器学习模型。它可以创建 6 种不同类型的报告,这些报告与数据漂移、分类或回归的模型性能等有关。

在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。欢迎大家收藏学习,喜欢点赞支持。

让我们开始吧

1、安装包

使用 pip 软件包管理器安装,运行

$ pip install evidently

该工具允许在 Jupyter notebook 中以及作为单独的html文件构建交互式报告。如果你只想将交互式报告生成为HTML文件或导出为JSON配置文件,则安装现已完成。

为了能够在 Jupyter notebook 中构建交互式报告,我们使用Jupyter nbextension。如果想在 Jupyter notebook 中创建报告,那么在安装之后,您应该在 terminal 中运行以下两个命令。

要安装 jupyter Nbextion,请运行:

$ jupyter nbextension install --sys-prefix --symlink --overwrite --py evidently

运行

jupyter nbextension enable evidently --py --sys-prefix

有一点需要注意:安装后单次运行就足够了。无需每次都重复最后两个命令。

2、导入所需的库

在这一步中,我们将导入创建ML模型所需的库。我们还将导入用于创建用于分析模型性能的仪表板的库。此外,我们将导入 pandas 以加载数据集。

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from evidently.dashboard import Dashboard
from evidently.tabs import RegressionPerformanceTab
from evidently.model_profile import Profile
from evidently.profile_sections import RegressionPerformanceProfileSection

3、加载数据集

在这一步中,我们将加载数据并将其分离为参考数据和预测数据。

raw_data = pd.read_csv('/content/day.csv', header = 0, sep = ',', parse_dates=['dteday'])
ref_data = raw_data[:120]
prod_data = raw_data[120:150]
ref_data.head()

4、创建模型

在这一步中,我们将创建机器学习模型,对于这个特定的数据集,我们将使用随机森林回归模型。

target = 'cnt'
datetime = 'dteday'
numerical_features = ['mnth', 'temp', 'atemp', 'hum', 'windspeed']
categorical_features = ['season', 'holiday', 'weekday', 'workingday', 'weathersit',]
features = numerical_features + categorical_features
model = RandomForestRegressor(random_state = 0)
model.fit(ref_data[features], ref_data[target])
ref_data['prediction']  = model.predict(ref_data[features])
prod_data['prediction'] = model.predict(prod_data[features])

5、创建仪表板

在这一步中,我们将创建仪表板来解释模型性能并分析模型的不同属性,如 MAE、MAPE、误差分布等。

column_mapping = {}
column_mapping['target'] = target
column_mapping['prediction'] = 'prediction'
column_mapping['datetime'] = datetime
column_mapping['numerical_features'] = numerical_features
column_mapping['categorical_features'] = categorical_features
dashboard = Dashboard(tabs=[RegressionPerformanceTab])
dashboard .calculate(ref_data, prod_data, column_mapping=column_mapping)
dashboard.save('bike_sharing_demand_model_perfomance.html')


在上图中,可以清楚地看到显示模型性能的报告,可以使用上述代码下载并创建的 HTML 报告。

6、可用报告类型

1)数据漂移

检测特征分布的变化

2)数值目标漂移

检测数值目标和特征行为的变化。

3)分类目标漂移

检测分类目标和特征行为的变化

4)回归模型性能

分析回归模型的性能和模型误差


5)分类模型性能

分析分类模型的性能和错误。适用于二元和多类模型


6)概率分类模型性能

分析概率分类模型的性能、模型校准的质量和模型错误。适用于二元和多类模型。

技术交流

欢迎转载、收藏、有所收获点赞支持一下!


目前开通了技术交流群,群友超过2000人,添加方式如下:

如下方式均可,添加时最好方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式一、发送如下图片至微信,进行长按识别,回复加群;
  • 方式二、直接添加小助手微信号:pythoner666,备注:来自CSDN
  • 方式三、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

以上是关于超硬核!Evidently 创建的机器学习模型仪表板真棒!的主要内容,如果未能解决你的问题,请参考以下文章

超硬核!万字梳理文本生成图像!

超硬核!万字梳理文本生成图像!

机器学习中必知必会的 8 种降维技术,最后一款超硬核!

超硬核 Web 前端学霸笔记,学完就去找工作!

超硬核分享,代码模型全开源!检索问答情感分析全覆盖

超硬核分享,代码模型全开源!检索问答情感分析全覆盖