PySpark local模式执行读取mongodb报错 Exception: Java gateway process exited before sending its port number(代

Posted 终回首

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PySpark local模式执行读取mongodb报错 Exception: Java gateway process exited before sending its port number(代相关的知识,希望对你有一定的参考价值。

一、报错

pyspark local模式win10上测试读取mongodb,报错
Error: Missing application resource.
Exception: Java gateway process exited before sending its port number

D:\\soft\\develop\\Anaconda3\\envs\\py37\\python.exe D:/ws/py_ws/minitask_project/etl_park_company/load_artery_data.py
2021-08-12 19:36:46,457 - INFO - main start - 48
Active code page: 65001
Active code page: 65001
Error: Missing application resource.

Usage: spark-submit [options] <app jar | python file | R file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn,
                              k8s://https://host:port, or local (Default: local[*]).
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor. File paths of these files
                              in executors can be accessed via SparkFiles.get(fileName).

  --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.
                              This argument does not work with --principal / --keytab.

  --help, -h                  Show this help message and exit.
  --verbose, -v               Print additional debug output.
  --version,                  Print the version of current Spark.

 Cluster deploy mode only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)

 YARN-only:
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.
      
The filename, directory name, or volume label syntax is incorrect.
Traceback (most recent call last):
  File "D:/ws/py_ws/minitask_project/etl_park_company/load_artery_data.py", line 74, in <module>
    .config('spark.jars.packages', 'org.mongodb.spark:mongo-spark-connector_2.11:2.4.2') \\
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\sql\\session.py", line 173, in getOrCreate
    sc = SparkContext.getOrCreate(sparkConf)
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\context.py", line 367, in getOrCreate
    SparkContext(conf=conf or SparkConf())
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\context.py", line 133, in __init__
    SparkContext._ensure_initialized(self, gateway=gateway, conf=conf)
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\context.py", line 316, in _ensure_initialized
    SparkContext._gateway = gateway or launch_gateway(conf)
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\java_gateway.py", line 46, in launch_gateway
    return _launch_gateway(conf)
  File "D:\\soft\\develop\\Anaconda3\\envs\\py37\\lib\\site-packages\\pyspark\\java_gateway.py", line 108, in _launch_gateway
    raise Exception("Java gateway process exited before sending its port number")
Exception: Java gateway process exited before sending its port number

Process finished with exit code 1

二、解决

原因是password里包含但不仅限于如下特殊字符
~!@#$%^&*()_+|

包含特殊字符时需要转义一下

# 假设原密码如下
password = "~!@#$%^&*()_+|"

# 在下方增加如下代码
import urllib
password = urllib.parse.quote_plus("~!@#$%^&*()_+|")

转义后即可读取到数据并show()

以上是关于PySpark local模式执行读取mongodb报错 Exception: Java gateway process exited before sending its port number(代的主要内容,如果未能解决你的问题,请参考以下文章

在 pyspark 中读取 Hive 托管表的 orc 文件

如何在读取前根据定义的模式读取 pyspark 中的镶木地板文件?

MySQL 使用 PySpark 读取

从 pyspark 读取 csv 指定模式错误类型

使用 PySpark 在本地模式下读取文件时出现 OutOfMemoryError

使用 pyspark 中 json 文件中的模式读取固定宽度文件