lio_sam之闭环检测
Posted COCO_PEAK_NOODLE
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了lio_sam之闭环检测相关的知识,希望对你有一定的参考价值。
简要概述:没什么就是icp匹配,为因子图提供闭环检测因子,这里闭环检测是一对一,cartographer中是一对多
/**
* 闭环scan-to-map,icp优化位姿
* 1、在历史关键帧中查找与当前关键帧距离最近的关键帧集合,选择时间相隔较远的一帧作为候选闭环帧
* 2、提取当前关键帧特征点集合,降采样;提取闭环匹配关键帧前后相邻若干帧的关键帧特征点集合,降采样
* 3、执行scan-to-map优化,调用icp方法,得到优化后位姿,构造闭环因子需要的数据,在因子图优化中一并加入更新位姿
* 注:闭环的时候没有立即更新当前帧的位姿,而是添加闭环因子,让图优化去更新位姿
*/
void performLoopClosure()
{
if (cloudKeyPoses3D->points.empty() == true)
return;
mtx.lock();
*copy_cloudKeyPoses3D = *cloudKeyPoses3D;
*copy_cloudKeyPoses6D = *cloudKeyPoses6D;
mtx.unlock();
// 当前关键帧索引,候选闭环匹配帧索引
int loopKeyCur;
int loopKeyPre;
// not-used
if (detectLoopClosureExternal(&loopKeyCur, &loopKeyPre) == false)
// 在历史关键帧中查找与当前关键帧距离最近的关键帧集合,选择时间相隔较远的一帧作为候选闭环帧
if (detectLoopClosureDistance(&loopKeyCur, &loopKeyPre) == false) return;
// 提取
pcl::PointCloud<PointType>::Ptr cureKeyframeCloud(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr prevKeyframeCloud(new pcl::PointCloud<PointType>());
{
// 提取当前关键帧特征点集合,降采样
loopFindNearKeyframes(cureKeyframeCloud, loopKeyCur, 0);
// 提取闭环匹配关键帧前后相邻若干帧的关键帧特征点集合,降采样
loopFindNearKeyframes(prevKeyframeCloud, loopKeyPre, historyKeyframeSearchNum);
// 如果特征点较少,返回
if (cureKeyframeCloud->size() < 300 || prevKeyframeCloud->size() < 1000)
return;
// 发布闭环匹配关键帧局部map
if (pubHistoryKeyFrames.getNumSubscribers() != 0)
publishCloud(&pubHistoryKeyFrames, prevKeyframeCloud, timeLaserInfoStamp, odometryFrame);
}
// ICP参数设置
static pcl::IterativeClosestPoint<PointType, PointType> icp;
//historyKeyframeSearchRadius = 15
icp.setMaxCorrespondenceDistance(historyKeyframeSearchRadius*2);
icp.setMaximumIterations(100);
icp.setTransformationEpsilon(1e-6);
icp.setEuclideanFitnessEpsilon(1e-6);
icp.setRANSACIterations(0);
// scan-to-map,调用icp匹配
icp.setInputSource(cureKeyframeCloud);
icp.setInputTarget(prevKeyframeCloud);
pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
icp.align(*unused_result);
// 未收敛,或者匹配不够好
// historyKeyframeFitnessScore = 0.3
if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore)
return;
// 发布当前关键帧经过闭环优化后的位姿变换之后的特征点云
if (pubIcpKeyFrames.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
pcl::transformPointCloud(*cureKeyframeCloud, *closed_cloud, icp.getFinalTransformation());
publishCloud(&pubIcpKeyFrames, closed_cloud, timeLaserInfoStamp, odometryFrame);
}
// 闭环优化得到的当前关键帧与闭环关键帧之间的位姿变换
float x, y, z, roll, pitch, yaw;
Eigen::Affine3f correctionLidarFrame;
correctionLidarFrame = icp.getFinalTransformation();
// 闭环优化前当前帧位姿
Eigen::Affine3f tWrong = pclPointToAffine3f(copy_cloudKeyPoses6D->points[loopKeyCur]);
// 闭环优化后当前帧位姿
Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong;
pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
// 闭环匹配帧的位姿
gtsam::Pose3 poseTo = pclPointTogtsamPose3(copy_cloudKeyPoses6D->points[loopKeyPre]);
gtsam::Vector Vector6(6);
float noiseScore = icp.getFitnessScore();
Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(Vector6);
// 添加闭环因子需要的数据
mtx.lock();
loopIndexQueue.push_back(make_pair(loopKeyCur, loopKeyPre));
loopPoseQueue.push_back(poseFrom.between(poseTo));
loopNoiseQueue.push_back(constraintNoise);
mtx.unlock();
loopIndexContainer[loopKeyCur] = loopKeyPre;
}
以上是关于lio_sam之闭环检测的主要内容,如果未能解决你的问题,请参考以下文章