Python数据分析

Posted 雨宙

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python数据分析相关的知识,希望对你有一定的参考价值。

Python数据分析(五)

打卡第九天啦!!!

pandas库(五)

数据规整

层次化索引

  1. 层次化索引的创建
data = pd.Series(np.random.randn(9),
                index=[['a','a','a','b','b','c','c','d','d'],
                      [1,2,3,1,3,1,2,2,3]])
  1. 层次化索引的外层选取和内层选取
# 外层选取
data['a']
data['b':'c']
data.loc[['b','d']]

# 内层选取
data.loc[:,2]
  1. df.set_index() 使用现有列设置单(复合)索引,df.reset_index()还原索引
frame = pd.DataFrame({'a':range(7),'b':range(7,0,-1),
                     'c':['one','one','one','two','two','two','two'],
                     'd':[0,1,2,0,1,2,3]})
frame2 = frame.set_index(['c','d'])
frame2.reset_index()

数据连接

  1. pd.merge可以根据单个或多个键将不同的DataFrame的行连接起来,类似数据库的连接操作
  2. pd.merge:(left, right, how=‘inner’,on=None,left_on=None, right_on=None )
    left:合并时左边的DataFrame
    right:合并时右边的DataFrame
    how:合并的方式,默认’inner’, ‘outer’, ‘left’, ‘right’
    on:需要合并的列名,必须两边都有的列名,并以 left 和 right 中的列名的交集作为连接键
    left_on: left Dataframe中用作连接键的列
    right_on: right Dataframe中用作连接键的列
  3. 内连接 inner:对两张表都有的键的交集进行联合
    全连接 outer:对两者表的都有的键的并集进行联合
    左连接 left:对所有左表的键进行联合
    右连接 right:对所有右表的键进行联合
import pandas as pd
import numpy as np

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                       'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})

pd.merge(left,right,on='key') #指定连接键key

key    A    B    C    D
0    K0    A0    B0    C0    D0
1    K1    A1    B1    C1    D1
2    K2    A2    B2    C2    D2
3    K3    A3    B3    C3    D3
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})

pd.merge(left,right,on=['key1','key2']) #指定多个键,进行合并

    key1    key2    A    B    C    D
0    K0    K0    A0    B0    C0    D0
1    K1    K0    A2    B2    C1    D1
2    K1    K0    A2    B2    C2    D2
#指定左连接

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})

pd.merge(left, right, how='left', on=['key1', 'key2'])

    key1    key2          A    B    C    D
0    K0        K0        A0    B0    C0    D0
1    K0        K1        A1    B1    NaN    NaN
2    K1        K0        A2    B2    C1    D1
3    K1        K0        A2    B2    C2    D2
4    K2        K1        A3    B3    NaN    NaN
#指定右连接

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(left, right, how='right', on=['key1', 'key2'])

    key1    key2          A    B    C    D
0    K0        K0        A0    B0    C0    D0
1    K1        K0        A2    B2    C1    D1
2    K1        K0        A2    B2    C2    D2
3    K2        K0        NaN    NaN    C3    D3
# 指定外连接
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
pd.merge(left,right,how='outer',on=['key1','key2'])

key1    key2    A    B    C    D
0    K0    K0    A0    B0    C0    D0
1    K0    K1    A1    B1    NaN    NaN
2    K1    K0    A2    B2    C1    D1
3    K1    K0    A2    B2    C2    D2
4    K2    K1    A3    B3    NaN    NaN
5    K2    K0    NaN    NaN    C3    D3
  1. 处理重复列名:参数suffixes:默认为_x, _y
# 处理重复列名
df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                        'data' : np.random.randint(0,10,7)})
df_obj2 = pd.DataFrame({'key': ['a', 'b', 'd'],
                        'data' : np.random.randint(0,10,3)})

print(pd.merge(df_obj1, df_obj2, on='key', suffixes=('_left', '_right')))

   data_left key  data_right
0          9   b           1
1          5   b           1
2          1   b           1
3          2   a           8
4          2   a           8
5          5   a           8

# 若不指定suffixes的默认情况
  key  data_x  data_y
0   b       4       8
1   b       1       8
2   b       3       8
3   a       0       0
4   a       2       0
5   a       0       0
  1. 按索引连接:参数left_index=True或right_index=True
# 按索引连接
df_obj1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
                        'data1' : np.random.randint(0,10,7)})
df_obj2 = pd.DataFrame({'data2' : np.random.randint(0,10,3)}, index=['a', 'b', 'd'])

print(pd.merge(df_obj1, df_obj2, left_on='key', right_index=True))

   data1 key  data2
0      3   b      6
1      4   b      6
6      8   b      6
2      6   a      0
4      3   a      0
5      0   a      0

数据合并

  1. 使用join方法对dataframe进行合并,能够起到和merge方法一样的效果,需要注意的是,使用join时要求没有重叠的列
left2 = pd.DataFrame([[1.,2.],[3.,4.],[5.,6.]],
                    index=['a','c','e'],
                    columns=['语文','数学'])

right2 = pd.DataFrame([[7.,8.],[9.,10.],[11.,12.],[13,14]],
                    index=['b','c','d','e'],
                    columns=['英语','综合'])

# pd.merge(left2,right2,how='outer',left_index=True,right_index=True)
left2.join(right2,how='outer')

    语文   数学    英语    综合
a   1.0    2.0     NaN     NaN
b   NaN    NaN     7.0     8.0
c   3.0    4.0     9.0     10.0
d   NaN    NaN     11.0    12.0
e   5.0    6.0     13.0    14.0
  1. 使用concat方法沿轴方向将多个对象合并到一起
    (1)NumPy的concat:np.concatenate
import numpy as np
import pandas as pd

arr1 = np.random.randint(0, 10, (3, 4))
arr2 = np.random.randint(0, 10, (3, 4))

print(arr1)
print(arr2)

print(np.concatenate([arr1, arr2]))
print(np.concatenate([arr1, arr2], axis=1))

# print(arr1)
[[3 3 0 8]
 [2 0 3 1]
 [4 8 8 2]]

# print(arr2)
[[6 8 7 3]
 [1 6 8 7]
 [1 4 7 1]]

# print(np.concatenate([arr1, arr2]))
 [[3 3 0 8]
 [2 0 3 1]
 [4 8 8 2]
 [6 8 7 3]
 [1 6 8 7]
 [1 4 7 1]]

# print(np.concatenate([arr1, arr2], axis=1)) 
[[3 3 0 8 6 8 7 3]
 [2 0 3 1 1 6 8 7]
 [4 8 8 2 1 4 7 1]]

  (2)pd.concat:注意指定轴方向,默认axis=0;join指定合并方式,默认为outer;Series合并时查看行索引有无重复

df1 = pd.DataFrame(np.arange(6).reshape(3,2),index=list('abc'),columns=['one','two'])

df2 = pd.DataFrame(np.arange(4).reshape(2,2)+5,index=list('ac'),columns=['three','four'])

pd.concat([df1,df2]) #默认外连接,axis=0

    four    one    three    two
a    NaN        0.0    NaN        1.0
b    NaN        2.0    NaN        3.0
c    NaN        4.0    NaN        5.0
a    6.0        NaN    5.0        NaN
c    8.0        NaN    7.0        NaN

pd.concat([df1,df2],axis='columns') #指定axis=1连接

    one    two    three    four
a    0    1    5.0        6.0
b    2    3    NaN        NaN
c    4    5    7.0        8.0

#同样我们也可以指定连接的方式为inner
pd.concat([df1,df2],axis=1,join='inner')

    one    two    three    four
a    0    1    5        6
c    4    5    7        8

重塑层次化索引

  1. stack方法能够将列索引转换为行索引,完成层级索引,即将dataframe转换为series,需要注意的是,stack默认过滤缺失数据,可以修改参数dropna为False来不忽略掉其中的缺失数据
import numpy as np
import pandas as pd

df_obj = pd.DataFrame(np.random.randint(0,10, (5,2)), columns=['data1', 'data2'])
print(df_obj)

stacked = df_obj.stack()
print(stacked)

# print(df_obj)
   data1  data2
0      7      9
1      7      8
2      8      9
3      4      1
4      1以上是关于Python数据分析的主要内容,如果未能解决你的问题,请参考以下文章

python 有用的Python代码片段

Python 向 Postman 请求代码片段

python [代码片段]一些有趣的代码#sort

使用 Python 代码片段编写 LaTeX 文档

python 机器学习有用的代码片段

python 代码片段和解决方案