运放的参数
Posted qlexcel
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了运放的参数相关的知识,希望对你有一定的参考价值。
内容摘抄自西安交通大学杨建国《你好,放大器》,经典,推荐一读!
在选择运放时应该知道自己的设计需求是什么,从而在运放参数表中来查找。一般来说在设计中需要考虑的问题包括:
1、运放供电电压大小和方式选择
因为供电电压限制了输入、输出信号的电压范围,因此选型时首先就要看这个参数。注意运放是否轨到轨,如果不是,需要注意下输出信号与供电电压的关系。
3、输入失调电压(Offset Voltage,VOS)
定义:在运放开环使用时,加载在两个输入端之间的直流电压使得放大器直流输出电压为 0。也可定义为当运放接成跟随器且正输入端接地时,输出存在的非 0 电压。
优劣范围:1µV 以下,属于极优秀的。100µV 以下的属于较好的。最大的有几十mV。
理解:任何一个放大器,无论开环连接或者反馈连接,当两个输入端都接地时,理论上输出应该为 0,但运放内部两输入支路无法做到完全平衡,导致输出永远不会是 0。此时保持放大器负输入端不变,而在正输入端施加一个可调的直流电压,调节它直到输出直流电压变为 0V,此时正输入端施加的电压的负值即为输入失调电压,用 VOS表示。但是,多数情况下,输入失调电压不分正负,生产厂家会以绝对值表示。
任何一个实际运放都可理解为正端内部串联了一个 VOS,然后进入一个理想运放,如图 2-1 所示。如左图,正端引入一个-VOS,则输出为 0,符合标准定义。如右图,跟随器正端接地,实际输出即为 VOS,也符合标准定义。
后果:当一个放大器被设计成 AF倍闭环电压增益(同相输入放大增益,也称噪声增益)时,如果放大器的失调电压为 VOS,则放大电路 0 输入时,输出存在一个等于 AFVOS的直流电平,此输出被称为输出失调电压。闭环增益越大,则输出失调电压也越大。
对策:如果被测信号包含直流量且你关心这个直流量,就必须选择 VOS远小于被测直流量的放大器,或者通过运放的调零措施消除这个影响。如果你仅关心被测信号中的交变成分,你可以在输入端和输出端增加交流耦合电路,将其消除。
调零方法:有些运放有两个调零端,按照数据手册提供的方法接电位器调零即可。对没有调零端的运放,可采用外部的输出调零或者输入调零,有标准电路可以参考。
4、失调电压漂移(Offset Voltage Drift)
定义:当温度变化、时间持续、供电电压等自变量变化时,输入失调电压会发生变化。输入失调电压随自变量变化的比值,称为失调电压漂移。
因此,有三种漂移量存在:
1)输入失调电压变化相对于温度变化的比值。是指定温度范围内的平均值,以 µV/°C为单位,用符号 ΔVOS/ΔT 或者 dVOS/dT 表示。
2)相对于时间的比值,以 µV/MO 为单位,含义是每月变化多少微伏。没有明确的符号,通常用文字表示。本文暂用 dVOS/dMO 表示。
3)相对于电源电压变化的比值,以 µV/V 为单位,含义是调好的放大器,当电源电压发生 1V 变化,会引起失调电压的变化。没有明确的符号,常用文字表示。此数值在很多放大器数据手册中没有体现。
优劣范围:0.002µV/°C 到几十 µV/°C。
5、输入偏置电流(Input bias current,IB)
定义:当输出维持在规定的电平时,两个输入端流进电流的平均值。
优劣范围:60fA~100µA。数量级相差巨大,这取决于运放输入端结构,FET 输入的会很小。
理解:运放的两个输入端并不是绝对高阻的,本项指标主要描述输入端流进电流的数量级。比如某个运放在接成跟随器且正输入端接地情况下,正输入端存在流进电流1.3nA,即图 2-2 中 IB1=1.3nA,负输入端存在流进电流 0.6nA,即图 2-2 中 IB2=0.6nA,那么该运放的输入偏置电流 IB即为 0.95nA。 IB=(IB1+ IB2)/2=(1.3 + 0.6)/2= 0.95nA
后果:第一,当用放大器接成跨阻放大测量外部微小电流时,过大的输入偏置电流会分掉被测电流,使测量失准。第二,当放大器输入端通过一个电阻接地时,这个电流将在电阻上产生不期望的输入电压。
对策:为避免输入偏置电流对放大电路的影响,最主要的措施是选择 IB较小的放大器。有很多 FET 输入运放可以实现这个要求。但是需要注意,高速运放且 IB较小的运放比较难选择,数量极少。ADI 公司的 ADA4817-1/-2,带宽 1050MHz,IB约为 2pA,单位增益稳定。
6、输入失调电流(Input offset current,ios)
定义:当输出维持在规定的电平时,两个输入端流进电流的差值。
优劣范围:20fA~100µA。数量级相差巨大,这取决于运放输入端结构,FET 输入的会很小。
理解:需要注意的是,这是数值的大小一般与该芯片的偏置电流相当。这很像一个班级的考试分数,平均大于 70 分,最大值与最小值差值大约也是 70 分(100 分-30 分) 。我们很少见到奇怪的现象:偏置电流是失调电流的 10 倍,说明其一致性太好了。
后果:失调电流的存在,说明两个输入端客观存在的电流有差异,后面将要所述的,用外部电阻实现匹配抵消偏置电流影响的措施,在此就失效了。
7、共模抑制比(Common-mode rejection ratio,CMRR)
定义:差模电压增益与共模电压增益的比值,用 dB 表示。
优劣范围:一般运放都有 60dB 以上的 CMRR,高级的可达 140dB 以上。
理解:
运算放大器在单端输入使用时,不存在这个概念。只有把运放接成类似于减法器形式,使得运放电路具备两个可变的输入端时,此指标才会发挥作用。
图 2-19 电路中,差模增益,如果给电路的两个输入端施加相同的输入电压Uic,在输出端理论上应为 0 输出,实际会测量到由 Uic引起的输出 Uoc,则共模抑制比为:
生产厂家更习惯于下面的写法,其实都是一样的。
其实就是现将输出电压按照差模增益折算到入端,再让输入电压除以它——共模输入被抑制了多少倍。
影响电路共模抑制比的因素有两个,第一是运放本身的共模抑制比,第二是对称电路中各个电阻的一致性。其实更多情况下,实现这类电路的高共模抑制比,关键在于外部电阻的一致性。此时,分立元件实现的电路,很难达到较高的 CMRR,运放生产厂家提供的差动放大器就显现出了优势。
理解共模抑制比的作用:全差分放大器——共模的意义
8、开环电压增益(Open-loop gain,AVO)
定义:运放本身具备的输出电压与两个输入端差压的比值,用 dB 表示。
优劣范围:一般在 60dB~160dB 之间。越大的,说明其放大能力越强。
理解:
开环电压增益是指放大器在闭环工作时,实际输出除以运放正负输入端之间的压差,类似于运放开环工作——其实运放是不能开环工作的。
AVO随频率升高而降低,通常从运放内部的第一个极点开始,其增益就以-20dB/10 倍频的速率开始下降,第二个极点开始加速下降。如图为 OP07 开环增益与信号频率之间的关系。
一般情况下,说某个运放的开环电压增益达到 100dB,是指其低频最高增益。多数情况下,很少有人关心这个指标,而去关心它的下降规律,即后续讲述的单位增益带宽,或者增益带宽积。
在特殊应用中,比如高精密测量、低失真度测量中需要注意此指标。在某个频率处实际的开环电压增益,将决定放大器的实际放大倍数与设计放大倍数的误差,也将决定放大器对自身失真的抑制,还将影响输出电阻等。
9、压摆率(Slew rate,SR)
定义:闭环放大器输出电压变化的最快速率。用 V/μs 表示。
优劣范围:从 2mV/μs 到 9000V/μs 不等。
理解:此值显示运放正常工作时,输出端所能提供的最大变化速率,当输出信号欲实现比这个速率还快的变化时,运放就不能提供了,导致输出波形变形——原本是正弦波就变成了三角波。
对一个正弦波来说,其最大变化速率发生在过零点处,且与输出信号幅度、频率有关。设输出正弦波幅度为 Am,频率为 fout,过零点变化速率为 DV,则
要想输出完美的正弦波,则正弦波过零点变化速率必须小于运放的压摆率。即
这个指标与后面讲述的满功率带宽有关。
10、带宽指标
与带宽相关的指标主要有四项:
单位增益带宽(Unity Gain-bandwidth,UGBW)—f1
定义:运放开环增益/频率图中,开环增益下降到 1 时的频率。
理解:当输入信号频率高于此值时,运放的开环增益会小于 1,即此时放大器不再具备放大能力。这是衡量运放带宽的一个主要指标。
增益带宽积(Gain Bandwidth Product,GBP 或者 GBW)—f2
定义:运放开环增益/频率图中,指定频率处,开环增益与该指定频率的乘积。
理解:如果运放开环增益始终满足-20dB/10 倍频,也就是频率提高 10 倍,开环增益变为 0.1 倍,那么它们的乘积将是一个常数,也就等于前述的“单位增益带宽” ,或者“1Hz处的增益” 。
在一个相对较窄的频率区域内,增益带宽积可以保持不变,基本满足-20dB/10 倍频的关系,我们暂称这个区域为增益线性变化区。
-3dB 带宽—f3
定义:运放闭环使用时,某个指定闭环增益(一般为 1 或者 2、10 等)下,增益变为低频增益的 0.707 倍时的频率。分为小信号(输出 200mV 以下)大信号(输出 2V)两种。
理解:它直接指出了使用该运放可以做到的-3dB 带宽。因为前述的两个指标,单位增益带宽和增益带宽积,其实都是对运放开环增益性能的一种描述,来自开环增益/频率图。
而这个指标是对运放接成某种增益的放大电路实施实测得到的。
满功率带宽(Full Power Bandwidth) —f0
定义:将运放接成指定增益闭环电路(一般为 1 倍) ,连接指定负载,输入加载正弦波,输出为指标规定的最大输出幅度,此状态下,不断增大输入信号频率,直到输出出现因压摆率限制产生的失真(变形)为止,此频率即为满功率带宽。
理解:比-3dB 带宽更为苛刻的一个限制频率。它指出在此频率之内,不但输出幅度不会降低,且能实现满幅度的大信号带载输出。满功率带宽与器件压摆率密切相关:
其中,Amax为运放能够输出的最大值(即满功率值) 。深入理解,请参考图 2-21B。
大小关系
注意,文中的 f0~ f3均为作者为描述简单而临时使用的。
一般情况下,f1<f2,且差不多,因此很少有数据手册同时给出这两个表格型指标。f3可能大些,也可能小些,取决于开环特性中的相频特性,但与前两者不会差很大。
输入失调电压VIO(Input Offset Voltage)
输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压的温漂αVIO(Input Offset Voltage Drift)
输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
输入阻抗
(1)差模输入阻抗
差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。
(2)共模输入阻抗
共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的 输入电流变化量之比。在低频情况下,它表现为共模电阻。
电压增益
(1)开环电压增益(Open-Loop Gain)
在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,记作AVOL,有的datasheet上写成:Large Signal Voltage Gain。AVOL的理想值为无限大,一般约为数千倍至数万倍,其表示法有使用dB及V/mV等。
(2)闭环电压增益(Closed-Loop Gain)
顾名思义,就是在有反馈的情况下,运算放大器的放大倍数。
输出电压摆幅(Output Voltage Swing)
当运放工作于线性区时,在指定的负载下,运放在当前电源电压供电时,运放能够输出的最大电压幅度。
输入电压范围
(1)差模输入电压范围
最大差模输入电压定义为,运放两输入端允许加的最大输入电压差。
当运放两输入端允许加的输入电压差超过最大差模输入电压时,可能造成运放输入级损坏。
(2)共模输入电压范围(Common Mode Input Voltage Range)
最大共模输入电压定义为,当运放工作于线性区时,在运放的共模抑制比特性显著变坏时的共模输入电压。
一般定义为当共模抑制比下降6dB 是所对应的共模输入电压作为最大共模输入电压。最大共模输入电压限制了输入信号中的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注意这个问题。
电源电压抑制比(Supply Voltage Rejection Ratio)
电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。
电源电压抑制比反映了电源变化对运放输出的影响。所以用作直流信号处理或是小信号处理模拟放大时,运放的电源需要作认真细致的处理。当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同。
静态功耗
运放在给定电源电压下的静态功率,通常是无负载状态下。
这里就会有个静态电流 IQ的概念,静态电流其实就是指运放在空载工作时自身消耗的电流。这是运放消耗电流的最小值(排除休眠状态)
输出阻抗
输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环的状态下测试。
等效输入噪声电压(Equivalent Input Noise Voltage)
等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。
这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。
以上是关于运放的参数的主要内容,如果未能解决你的问题,请参考以下文章