优化求解基于matlab免疫算法求解函数极值问题含Matlab源码 1200期
Posted 紫极神光
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了优化求解基于matlab免疫算法求解函数极值问题含Matlab源码 1200期相关的知识,希望对你有一定的参考价值。
一、简介
1引言
“Immune”(免疫)一词是从拉丁文衍生而来的。很早以前,人们就注意到传染病患者痊愈后,对该病会有不同程度的免疫力。在医学上,免疫是指机体接触抗原性异物的一种生理反应。1958年澳大利亚学者Burnet率先提出了与免疫算法(Immune Algorithm, I A) 相关的理论――克隆选择原理[1] 。1973年Jer ne提出免疫系统的模型[2] , 他基于Burnet的克隆选择学说, 开创了独特型网络理论, 给出了免疫系统的数学框架,并采用微分方程建模来仿真淋巴细胞的动态变化。
1986年Farm al等人基于免疫网络学说理论构造出的免疫系统的动态模型,展示了免疫系统与其他人工智能方法相结合的可能性,开创了免疫系统研究的先河。他们先利用一组随机产生的微分方程建立起
人工免疫系统,再通过采用适应度阈值过滤的方法去掉方程组中那些不合适的微分方程,对保留下来的微分方程则采用交叉、变异、逆转等遗传操作产生新的微分方程,经过不断的迭代计算,直到找到最佳的一组微分方程为止。
从此以后,对免疫算法的研究在国际上引起越来越多学者的兴趣。几十年来,与之相关的研究成果已经涉及非线性最优化、组合优化、控制工程、机器人、故障诊断、图像处理等诸多领域[3-6].免疫算法是模仿生物免疫机制,结合基因的进化机理,人工构造出的一种新型智能优化算法。它具有一般免疫系统的特征,采用群体搜索策略,通过迭代计算,最终以较大的概率得到问题的最优解。相比较于其他算法,免疫算法利用自身产生多样性和维持机制的特点,保证了种群的多样性,克服了一般寻优过程(特别是多峰值的寻优过程)中不可避免的“早熟”问题,可以求得全局最优解。免疫算法具有自适应性、随机性、并行性、全局收敛性、种群多样性等优点。
<
以上是关于优化求解基于matlab免疫算法求解函数极值问题含Matlab源码 1200期的主要内容,如果未能解决你的问题,请参考以下文章
优化求解基于matlab模拟退火算法求解函数极值问题含Matlab源码 1203期
优化求解基于matlab蚁群算法求解函数极值问题含Matlab源码 1201期
优化求解基于matlab差分进化算法求解函数极值问题含Matlab源码 1199期
优化求解基于matlab禁忌搜索算法求解函数极值问题含Matlab源码 1204期