WebGL常用数学公式

Posted Heavi的博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了WebGL常用数学公式相关的知识,希望对你有一定的参考价值。

1.三角函数

    坐标轴采用右手法则,沿Z轴的逆时针方向为正角度,假设原始点为p(x,y,z),a是X轴旋转到点p的角度,r是从原始点到p点的距离。用这两个变量计算出点p的坐标,等式如下:

x = rcos a;
y = rsin a;

    类似的可以使用r,a,b(p旋转的角度)来表示p\'的坐标:

x\' = r cos(a + b);
y\' = r sin(a + b);

    利用三角函数两角和公式:

sin(a +/- b) = sin a cos b +/- cos a sin b
cos(a +/- b) = cos a cos b -/+ sin a sin b

    可得:

x\' = r(cos a cos b - sin a sin b)
y\' = r(sin a cos b + cos a sin b)

    最后将x,y等式带入,消除r 和 a 可得等式:

x\' = x cos b - y sin b
y\' = x sin b + y cos b
z\' = z

    另外计算中也会用到弧度计算功能:

radian = a * (PI / 180)

2.变换矩阵:旋转

    矩阵和矢量的方式可以用如下等式表示:

image

    等式的右边由x、y、z组成的矢量被称为三维矢量。计算方式如下:

x\' = ax + by + cz
y\' = dx + ey + fz
z\' = gx + hy + iz

    在看看三角函数的等式,并与其比较:

x\' = ax + by + cz
x\' = x cosb - y sinb

    如果 a = cosb, b = -sinb,c = 0,那么两个等式完全相同。在看y\':

y\' = dx + ey + fz
y\' = x sinb + y cosb

    如果 d = sinb, e = cobb, f = 0,那么两个等式完全相同。将这些结果代入到等式3.4中,得到等式:

image

    这个矩阵被称为变换矩阵(transformation matrix),也被称为旋转矩阵(rotation matrix)。

3.变换矩阵:平移

    平移公式:x\' = x + Tx。

    如下所示是4*4矩阵:

image

    该矩阵的乘法结果如下所示:

    image

    根据最后一个式子 1 = mx + ny + oz + p,很容易求得系数m = 0, n = 0, o = 0, p = 1;比较x\',可知 a = 1, b = 0, c = 0, d = Tx;类似地,比较y\',可知e = 0, f = 1,g = 0, h = Ty;比较z\',可知i = 0, j = 0, k = 1, l = Tz。这样,就可以写出表示平移的矩阵,又称为平移矩阵(translation matrix)。如下所示:

image

4. 4*4的旋转矩阵

    将旋转矩阵从一个3*3矩阵转变为一个4*4矩阵,只需要将旋转公式和4*4矩阵公式比较下:

x\' = xcosb - ysinb
y\' = xsinb + ycosb
z\' = z
x\' = ax + by + cz + d
y\' = ex + fy + gz + h
z\' = ix + jy + kz + l
l = mx + ny + oz + p

    例如,当你通过比较x\' = xcosb - ysinb与x\' = ax + by +cz +d时,可知a = cosb, b = -sinb, c= 0, d = 0。以此类推,求得y\'和z\'等式中的系数,最终得到4*4的旋转矩阵。如下所示:

image

5.变换矩阵:缩放

    假设在三个方向X轴,Y轴,Z轴的缩放因子Sx, Sy, Sz不相关,那么有:

x\' = Sx * x
y\' = Sy * y
z\' = Sz * z

    和矩阵的乘法结果比较,可知缩放操作的变换矩阵:

    image

6.distance(position1, position2)

    顶点着色器内置函数,计算出两个坐标之间的距离。参数:

    position1:第一个坐标
    position2:第二个坐标
    返回距离,值为float类型

7.mix(x, y, z)函数(数学函数x*(1-z) + y*z)

    GL_ES内置函数,该函数会计算x*(1-z) + y*z,其中x、y、z分别为第1、2和3个参数。

以上是关于WebGL常用数学公式的主要内容,如果未能解决你的问题,请参考以下文章

LaTeX一些数学公式中常用符号

怎样在 Markdown 中使用数学公式

数学公式编辑器的常用软件

markdown常用数学公式

FPGA数学公式使用FPGA实现常用数学公式

收藏推荐Markdown常用LaTeX数学符号&公式