深度解剖HashMap底层原理

Posted 勇敢牛牛不怕困难@帅

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度解剖HashMap底层原理相关的知识,希望对你有一定的参考价值。


写在前面

HashMap实现了Map, Cloneable, Serializable接口,继承了AbstractMap类,Map也是属于容器的父接口,Map接口主要用来存储的是键值对,根据hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历的顺序却是不确定的。HashMap最多只允许有一条记录的键为null,允许多个值为null。HashMap的线程并不安全,可能多个线程对HashMap进行操作会导致数据不一致,如果想满足线程安全,可以使用Collections帮助类的synchronizedMap方法使HashMap具有线程安全能力,或者使用ConcurrentHashMap。

JDK1.7版本——HashMap

JAVA7对于HashMap的实现主要用的数据结构是数组+链表,每个数组中的每个元素是一个单向链表,下图中每个绿色的实体就是内部类Entry的实例对象,Entry包括四个属性:key、value、hash值和指向下一个Entry对象的next指针。每个链表相当于一个hashtable的桶,链表主要用于解决hash冲突:如果不同key值计算出来的hash值相同,将会存储到数组相同的位置,由于之前的hash值数组位置已经存放了元素,则将原先位置的元素移到单链表的中,冲突hash值对应的键值存放到数组元素中。(发生冲突时新元素总是放在数组中,也就是在链表的头部,然后将原来的元素移入到链表中,类似于单链表的头插法!)
该采用链表解决hash冲突的方法 = 链地址法
重要参数
1.capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。
2. loadFactor:负载因子,默认为 0.75。
3. threshold:扩容的阈值,等于 capacity * loadFactor

java.1.7源码分析

类的定义:基于Map接口的实现类,继承了AbstractMap抽象类,实现了Cloneable接口和Serializable接口,可实现序列化和拷贝。

public class HashMap<K,V>
         extends AbstractMap<K,V> 
         implements Map<K,V>, Cloneable, Serializable

Entry内部类实现源码,具体信息看注释!Entry主要作用也就是用来存储HashMap中的Key和Value,通过HashCode计算出Entry对象应该去的数组下标位置。

/** 
 * Entry类实现了Map.Entry接口
 * 即 实现了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/  
static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;  // 键
    V value;  // 值
    Entry<K,V> next; // 指向下一个节点 ,也是一个Entry对象,从而形成解决hash冲突的单链表
    int hash;  // hash值
  
    /** 
     * 构造方法,创建一个Entry 
     * 参数:哈希值h,键值k,值v、下一个节点n 
     */  
    Entry(int h, K k, V v, Entry<K,V> n) {  
        value = v;  
        next = n;  
        key = k;  
        hash = h;  
    }  
  
    // 返回 与 此项 对应的键
    public final K getKey() {  
        return key;  
    }  

    // 返回 与 此项 对应的值
    public final V getValue() {  
        return value;  
    }  
  
    public final V setValue(V newValue) {  
        V oldValue = value;  
        value = newValue;  
        return oldValue;  
    }  
    
   /** 
     * equals()
     * 作用:判断2个Entry是否相等,必须key和value都相等,才返回true  
     */ 
      public final boolean equals(Object o) {  
        if (!(o instanceof Map.Entry))  
            return false;  
        Map.Entry e = (Map.Entry)o;  
        Object k1 = getKey();  
        Object k2 = e.getKey();  
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {  
            Object v1 = getValue();  
            Object v2 = e.getValue();  
            if (v1 == v2 || (v1 != null && v1.equals(v2)))  
                return true;  
        }  
        return false;  
    }  
    
    /** 
     * hashCode() 
     */ 
    public final int hashCode() { 
        return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());  
    }  
  
    public final String toString() {  
        return getKey() + "=" + getValue();  
    }  
  
    /** 
     * 当向HashMap中添加元素时,即调用put(k,v)时, 
     * 对已经在HashMap中k位置进行v的覆盖时,会调用此方法 
     * 此处没做任何处理 
     */  
    void recordAccess(HashMap<K,V> m) {  
    }  
  
    /** 
     * 当从HashMap中删除了一个Entry时,会调用该函数 
     * 此处没做任何处理 
     */  
    void recordRemoval(HashMap<K,V> m) {  
    } 

}

new一个HashMap实例的存储流程图如下:

API常用方法

V get(Object key); // 获得指定键的值
V put(K key, V value);  // 添加键值对
void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
V remove(Object key);  // 删除该键值对

boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
 
Set<K> keySet();  // 单独抽取key序列,将所有key生成一个Set
Collection<V> values();  // 单独value序列,将所有value生成一个Collection

void clear(); // 清除哈希表中的所有键值对
int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空 

API中重要的变量

// 1. 容量(capacity): HashMap中数组的长度
// a. 容量范围:必须是2的幂 & <最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
  // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
  // 最大容量 =  2的30次方(若传入的容量过大,将被最大值替换)
  static final int MAXIMUM_CAPACITY = 1 << 30;

// 2. 加载因子(Load factor):HashMap在其容量自动增加前可达到多满的一种尺度
// a. 加载因子越大、填满的元素越多 = 空间利用率高、但冲突的机会加大、查找效率变低(因为链表变长了)
// b. 加载因子越小、填满的元素越少 = 空间利用率小、冲突的机会减小、查找效率高(链表不长)
  // 实际加载因子
  final float loadFactor;
  // 默认加载因子 = 0.75
  static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表(即扩充HashMap的容量) 
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 x 加载因子
  int threshold;

// 4. 其他
 // 存储数据的Entry类型 数组,长度 = 2的幂
 // HashMap的实现方式 = 拉链法,Entry数组上的每个元素本质上是一个单向链表
  transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;  
 // HashMap的大小,即 HashMap中存储的键值对的数量
  transient int size;
 

加载因子详细说明:

第一步:申明一个HashMap对象

/**
  * 函数使用原型
  */
  Map<String,Integer> map = new HashMap<String,Integer>();

 /**
   * 源码分析:主要是HashMap的构造函数 = 4个
   * 仅贴出关于HashMap构造函数的源码
   */
  public class HashMap<K,V>
      extends AbstractMap<K,V>
      implements Map<K,V>, Cloneable, Serializable{

    // 省略上节阐述的参数
    
  /**
     * 构造函数1:默认构造函数(无参)
     * 加载因子 & 容量 = 默认 = 0.75、16
     */
    public HashMap() {
        // 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
        // 传入的指定容量 & 加载因子 = 默认
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); 
    }

    /**
     * 构造函数2:指定“容量大小”的构造函数
     * 加载因子 = 默认 = 0.75 、容量 = 指定大小
     */
    public HashMap(int initialCapacity) {
        // 实际上是调用指定“容量大小”和“加载因子”的构造函数
        // 只是在传入的加载因子参数 = 默认加载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
        
    }

    /**
     * 构造函数3:指定“容量大小”和“加载因子”的构造函数
     * 加载因子 & 容量 = 自己指定
     */
    public HashMap(int initialCapacity, float loadFactor) {

        // HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        // 设置 加载因子
        this.loadFactor = loadFactor;
        // 设置 扩容阈值 = 初始容量
        // 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解  
        threshold = initialCapacity;   

        init(); // 一个空方法用于未来的子对象扩展
    }

    /**
     * 构造函数4:包含“子Map”的构造函数
     * 即 构造出来的HashMap包含传入Map的映射关系
     * 加载因子 & 容量 = 默认
     */

    public HashMap(Map<? extends K, ? extends V> m) {

        // 设置容量大小 & 加载因子 = 默认
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);

        // 该方法用于初始化 数组 & 阈值,下面会详细说明
        inflateTable(threshold);

        // 将传入的子Map中的全部元素逐个添加到HashMap中
        putAllForCreate(m);
    }
}

第二步:存放键值对,put()方法

 /**
   * 函数使用原型
   */
   		map.put("A", 1);
        map.put("B", 2);
        map.put("C", 3);
        map.put("D", 4);
        map.put("E", 5);

   /**
     * 源码分析:主要分析: HashMap的put函数
     */
    public V put(K key, V value)
(分析1// 1. 若 哈希表未初始化(即 table为空) 
        // 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table  
        if (table == EMPTY_TABLE) { 
        inflateTable(threshold); 
    }  
        // 2. 判断key是否为空值null
(分析2// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
        // (本质:key = Null时,hash值 = 0,故存放到table[0]中)
        // 该位置永远只有1个value,新传进来的value会覆盖旧的value
        if (key == null)
            return putForNullKey(value);

(分析3// 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
        // a. 根据键值key计算hash值
        int hash = hash(key);
        // b. 根据hash值 最终获得 key对应存放的数组Table中位置
        int i = indexFor(hash, table.length);

        // 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
(分析4// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue; //并返回旧的value
            }
        }

        modCount++;

(分析5// 3.2 若 该key不存在,则将“key-value”添加到table中
        addEntry(hash, key, value, i);
        return null;
    }

第三步:获取数据get()

/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key)/**
   * 源码分析
   */ 
   public V get(Object key) {  

    // 1. 当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
    if (key == null)  
        return getForNullKey(); --> 分析1

    // 2. 当key ≠ null时,去获得对应值 -->分析2
    Entry<K,V> entry = getEntry(key);
  
    return null == entry ? null : entry.getValue();  
}  


 /**
   * 分析1:getForNullKey()
   * 作用:当key == null时,则到 以哈希表数组中的第1个元素(即table[0])为头结点的链表去寻找对应 key == null的键
   */ 
private V getForNullKey() {  

    if (size == 0) {  
        return null;  
    }  

    // 遍历以table[0]为头结点的链表,寻找 key==null 对应的值
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {  

        // 从table[0]中取key==null的value值 
        if (e.key == null)  
            return e.value; 
    }  
    return null;  
}  
 
 /**
   * 分析2:getEntry(key)
   * 作用:当key ≠ null时,去获得对应值
   */  
final Entry<K,V> getEntry(Object key) {  

    if (size == 0) {  
        return null;  
    }  

    // 1. 根据key值,通过hash()计算出对应的hash值
    int hash = (key == null) ? 0 : hash(key);  

    // 2. 根据hash值计算出对应的数组下标
    // 3. 遍历 以该数组下标的数组元素为头结点的链表所有节点,寻找该key对应的值
    for (Entry<K,V> e = table[indexFor(hash, table.length)];  e != null;  e = e.next) {  

        Object k;  
        // 若 hash值 & key 相等,则证明该Entry = 我们要的键值对
        // 通过equals()判断key是否相等
        if (e.hash == hash &&  
            ((k = e.key) == key || (key != null && key.equals(k))))  
            return e;  
    }  
    return null;  
}  

对HashMap的其他操作

  /**
   * 函数:isEmpty()
   * 作用:判断HashMap是否为空,即无键值对;size == 0时 表示为 空 
   */

public boolean isEmpty() {  
    return size == 0;  
} 

 /**
   * 函数:size()
   * 作用:返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
   */

   public int size() {  
    return size;  
}  

 /**
   * 函数:clear()
   * 作用:清空哈希表,即删除所有键值对
   * 原理:将数组table中存储的Entry全部置为null、size置为0
   */ 
public void clear() {  
    modCount++;  
    Arrays.fill(table, null);
    size = 0;
}  

/**
   * 函数:putAll(Map<? extends K, ? extends V> m)
   * 作用:将指定Map中的键值对 复制到 此Map中
   * 原理:类似Put函数
   */ 

    public void putAll(Map<? extends K, ? extends V> m) {  
    // 1. 统计需复制多少个键值对  
    int numKeysToBeAdded = m.size();  
    if (numKeysToBeAdded == 0)  
        return; 

    // 2. 若table还没初始化,先用刚刚统计的复制数去初始化table  
    if (table == EMPTY_TABLE) {  
        inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));  
    }  
  
    // 3. 若需复制的数目 > 阈值,则需先扩容 
    if (numKeysToBeAdded > threshold) {  
        int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);  
        if (targetCapacity > MAXIMUM_CAPACITY)  
            targetCapacity = MAXIMUM_CAPACITY;  
        int newCapacity = table.length;  
        while (newCapacity < targetCapacity)  
            newCapacity <<= 1;  
        if (newCapacity > table.length)  
            resize(newCapacity);  
    }  
    // 4. 开始复制(实际上不断调用Put函数插入)  
    for (Map.Entry<? extends K, ? extends V> e : m.entrySet())  
        put(e.getKey(), e.getValue())以上是关于深度解剖HashMap底层原理的主要内容,如果未能解决你的问题,请参考以下文章

MySQL原理深度解剖与应用最佳实践

MySQL原理深度解剖与应用最佳实践

为啥面试要问hashmap 的原理

HashMap底层红黑树原理(超详细图解)+手写红黑树代码

HashMap底层原理小记

深度解剖dubbo源码