NLP文本情感分类
Posted ZSYL
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NLP文本情感分类相关的知识,希望对你有一定的参考价值。
1. 案例介绍
为了对前面的word embedding这种常用的文本向量化的方法进行巩固,这里我们会完成一个文本情感分类的案例
现在我们有一个经典的数据集IMDB
数据集,地址:http://ai.stanford.edu/~amaas/data/sentiment/
,这是一份包含了5万条流行电影的评论数据,其中训练集25000条,测试集25000条。数据格式如下:
下图左边为名称,其中名称包含两部分,分别是序号和情感评分,(1-4为neg,5-10为pos),右边为评论内容
根据上述的样本,需要使用pytorch完成模型,实现对评论情感进行预测
2. 思路分析
首先可以把上述问题定义为分类问题,情感评分分为1-10,10个类别(也可以理解为回归问题,这里当做分类问题考虑)。那么根据之前的经验,我们的大致流程如下:
- 准备数据集
- 构建模型
- 模型训练
- 模型评估
知道思路之后,那么我们一步步来完成上述步骤
3. 准备数据集
准备数据集和之前的方法一样,实例化dataset,准备dataloader,最终我们的数据可以处理成如下格式:
其中有两点需要注意:
- 如何完成基础打Dataset的构建和Dataloader的准备
- 每个batch中文本的长度不一致的问题如何解决
- 每个batch中的文本如何转化为数字序列
3.1 基础Dataset的准备
import torch
from torch.utils.data import DataLoader,Dataset
import os
import re
data_base_path = r"data\\aclImdb"
#1. 定义tokenize的方法
def tokenize(text):
# fileters = '!"#$%&()*+,-./:;<=>?@[\\\\]^_`{|}~\\t\\n'
fileters = ['!','"','#','$','%','&','\\(','\\)','\\*','\\+',',','-','\\.','/',':',';','<','=','>','\\?','@'
,'\\[','\\\\','\\]','^','_','`','\\{','\\|','\\}','~','\\t','\\n','\\x97','\\x96','”','“',]
text = re.sub("<.*?>"," ",text,flags=re.S)
text = re.sub("|".join(fileters)," ",text,flags=re.S)
return [i.strip() for i in text.split()]
#2. 准备dataset
class ImdbDataset(Dataset):
def __init__(self,mode):
super(ImdbDataset,self).__init__()
if mode=="train":
text_path = [os.path.join(data_base_path,i) for i in ["train/neg","train/pos"]]
else:
text_path = [os.path.join(data_base_path,i) for i in ["test/neg","test/pos"]]
self.total_file_path_list = []
for i in text_path:
self.total_file_path_list.extend([os.path.join(i,j) for j in os.listdir(i)])
def __getitem__(self, idx):
cur_path = self.total_file_path_list[idx]
cur_filename = os.path.basename(cur_path)
label = int(cur_filename.split("_")[-1].split(".")[0]) -1 #处理标题,获取label,转化为从[0-9]
text = tokenize(open(cur_path).read().strip()) #直接按照空格进行分词
return label,text
def __len__(self):
return len(self.total_file_path_list)
# 2. 实例化,准备dataloader
dataset = ImdbDataset(mode="train")
dataloader = DataLoader(dataset=dataset,batch_size=2,shuffle=True)
#3. 观察数据输出结果
for idx,(label,text) in enumerate(dataloader):
print("idx:",idx)
print("table:",label)
print("text:",text)
break
输出如下:
idx: 0
table: tensor([3, 1])
text: [('I', 'Want'), ('thought', 'a'), ('this', 'great'), ('was', 'recipe'), ('a', 'for'), ('great', 'failure'), ('idea', 'Take'), ('but', 'a'), ('boy', 's'), ('was', 'y'), ('it', 'plot'), ('poorly', 'add'), ('executed', 'in'), ('We', 'some'), ('do', 'weak'), ('get', 'completely'), ('a', 'undeveloped'), ('broad', 'characters'), ('sense', 'and'), ('of', 'than'), ('how', 'throw'), ('complex', 'in'), ('and', 'the'), ('challenging', 'worst'), ('the', 'special'), ('backstage', 'effects'), ('operations', 'a'), ('of', 'horror'), ('a', 'movie'), ('show', 'has'), ('are', 'known'), ('but', 'Let'), ('virtually', 'stew'), ('no', 'for'), ...('show', 'somehow'), ('rather', 'destroy'), ('than', 'every'), ('anything', 'copy'), ('worth', 'of'), ('watching', 'this'), ('for', 'film'), ('its', 'so'), ('own', 'it'), ('merit', 'will')]
明显,其中的text内容出现对应,和想象的不太相似,出现问题的原因在于Dataloader
中的参数collate_fn
collate_fn
的默认值为torch自定义的default_collate
,collate_fn
的作用就是对每个batch进行处理,而默认的default_collate
处理出错。
解决问题的思路:
手段1:考虑先把数据转化为数字序列,观察其结果是否符合要求,之前使用DataLoader并未出现类似错误
手段2:考虑自定义一个collate_fn
,观察结果
这里使用方式2,自定义一个collate_fn
,然后观察结果:
def collate_fn(batch):
#batch是list,其中是一个一个元组,每个元组是dataset中__getitem__的结果
batch = list(zip(*batch))
labes = torch.tensor(batch[0],dtype=torch.int32)
texts = batch[1]
del batch
return labes,texts
dataloader = DataLoader(dataset=dataset,batch_size=2,shuffle=True,collate_fn=collate_fn)
#此时输出正常
for idx,(label,text) in enumerate(dataloader):
print("idx:",idx)
print("table:",label)
print("text:",text)
break
3.2 文本序列化
再介绍word embedding的时候,我们说过,不会直接把文本转化为向量,而是先转化为数字,再把数字转化为向量,那么这个过程该如何实现呢?
这里我们可以考虑把文本中的每个词语和其对应的数字,使用字典保存,同时实现方法把句子通过字典映射为包含数字的列表。
实现文本序列化之前,考虑以下几点:
- 如何使用字典把词语和数字进行对应
- 不同的词语出现的次数不尽相同,是否需要对高频或者低频词语进行过滤,以及总的词语数量是否需要进行限制
- 得到词典之后,如何把句子转化为数字序列,如何把数字序列转化为句子
- 不同句子长度不相同,每个batch的句子如何构造成相同的长度(可以对短句子进行填充,填充特殊字符)
- 对于新出现的词语在词典中没有出现怎么办(可以使用特殊字符代理)
思路分析:
- 对所有句子进行分词
- 词语存入字典,根据次数对词语进行过滤,并统计次数
- 实现文本转数字序列的方法
- 实现数字序列转文本方法
import numpy as np
class Word2Sequence():
UNK_TAG = "UNK"
PAD_TAG = "PAD"
UNK = 0
PAD = 1
def __init__(self):
self.dict = {
self.UNK_TAG :self.UNK,
self.PAD_TAG :self.PAD
}
self.fited = False
def to_index(self,word):
"""word -> index"""
assert self.fited == True,"必须先进行fit操作"
return self.dict.get(word,self.UNK)
def to_word(self,index):
"""index -> word"""
assert self.fited , "必须先进行fit操作"
if index in self.inversed_dict:
return self.inversed_dict[index]
return self.UNK_TAG
def __len__(self):
return self(self.dict)
def fit(self, sentences, min_count=1, max_count=None, max_feature=None):
"""
:param sentences:[[word1,word2,word3],[word1,word3,wordn..],...]
:param min_count: 最小出现的次数
:param max_count: 最大出现的次数
:param max_feature: 总词语的最大数量
:return:
"""
count = {}
for sentence in sentences:
for a in sentence:
if a not in count:
count[a] = 0
count[a] += 1
# 比最小的数量大和比最大的数量小的需要
if min_count is not None:
count = {k: v for k, v in count.items() if v >= min_count}
if max_count is not None:
count = {k: v for k, v in count.items() if v <= max_count}
# 限制最大的数量
if isinstance(max_feature, int):
count = sorted(list(count.items()), key=lambda x: x[1])
if max_feature is not None and len(count) > max_feature:
count = count[-int(max_feature):]
for w, _ in count:
self.dict[w] = len(self.dict)
else:
for w in sorted(count.keys()):
self.dict[w] = len(self.dict)
self.fited = True
# 准备一个index->word的字典
self.inversed_dict = dict(zip(self.dict.values(), self.dict.keys()))
def transform(self, sentence,max_len=None):
"""
实现吧句子转化为数组(向量)
:param sentence:
:param max_len:
:return:
"""
assert self.fited, "必须先进行fit操作"
if max_len is not None:
r = [self.PAD]*max_len
else:
r = [self.PAD]*len(sentence)
if max_len is not None and len(sentence)>max_len:
sentence=sentence[:max_len]
for index,word in enumerate(sentence):
r[index] = self.to_index(word)
return np.array(r,dtype=np.int64)
def inverse_transform(self,indices):
"""
实现从数组 转化为文字
:param indices: [1,2,3....]
:return:[word1,word2.....]
"""
sentence = []
for i in indices:
word = self.to_word(i)
sentence.append(word)
return sentence
if __name__ == '__main__':
w2s = Word2Sequence()
w2s.fit([
["你", "好", "么"],
["你", "好", "哦"]])
print(w2s.dict)
print(w2s.fited)
print(w2s.transform(["你","好","嘛"]))
print(w2s.transform(["你好嘛"],max_len=10))
完成了wordsequence
之后,接下来就是保存现有样本中的数据字典,方便后续的使用。
实现对IMDB数据的处理和保存
#1. 对IMDB的数据记性fit操作
def fit_save_word_sequence():
from wordSequence import Word2Sequence
ws = Word2Sequence()
train_path = [os.path.join(data_base_path,i) for i in ["train/neg","train/pos"]]
total_file_path_list = []
for i in train_path:
total_file_path_list.extend([os.path.join(i, j) for j in os.listdir(i)])
for cur_path in tqdm(total_file_path_list,ascii=True,desc="fitting"):
ws.fit(tokenize(open(cur_path).read().strip()))
ws.build_vocab()
# 对wordSequesnce进行保存
pickle.dump(ws,open("./model/ws.pkl","wb"))
#2. 在dataset中使用wordsequence
ws = pickle.load(open("./model/ws.pkl","rb"))
def collate_fn(batch):
MAX_LEN = 500
#MAX_LEN = max([len(i) for i in texts]) #取当前batch的最大值作为batch的最大长度
batch = list(zip(*batch))
labes = torch.tensor(batch[0],dtype=torch.int)
texts = batch[1]
#获取每个文本的长度
lengths = [len(i) if len(i)<MAX_LEN else MAX_LEN for i in texts]
texts = torch.tensor([ws.transform(i, MAX_LEN) for i in texts])
del batch
return labes,texts,lengths
#3. 获取输出
dataset = ImdbDataset(ws,mode="train")
dataloader = DataLoader(dataset=dataset,batch_size=20,shuffle=True,collate_fn=collate_fn)
for idx,(label,text,length) in enumerate(dataloader):
print("idx:",idx)
print("table:",label)
print("text:",text)
print("length:",length)
break
输出如下
idx: 0
table: tensor([ 7, 4, 3, 8, 1, 10, 7, 10, 7, 2, 1, 8, 1, 2, 2, 4, 7, 10,
1, 4], dtype=torch.int32以上是关于NLP文本情感分类的主要内容,如果未能解决你的问题,请参考以下文章