LeetCode 62. 不同路径
Posted ZSYL
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 62. 不同路径相关的知识,希望对你有一定的参考价值。
LeetCode 62. 不同路径
题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
方法一:深度优先搜索
时间超限
class Solution {
public int uniquePaths(int m, int n) {
return dfs(1, 1, m, n);
}
public int dfs(int x, int y, int m, int n) {
int ret = 0;
if (x == m && y == n)
return 1;
if (x+1 <= m)
ret += dfs(x+1, y, m, n);
if (y+1 <= n)
ret += dfs(x, y+1, m, n);
return ret;
}
}
方法二:动态规划
思路与算法
我们用 f(i,j) 表示从左上角走到 (i,j) 的路径数量,其中 i 和 j 的范围分别是 [0,m) 和 [0,n)。
推导式:f(i,j) = f(i-1, j) + f(i, j-1)
由于我们每一步只能从向下或者向右移动一步,因此要想走到 (i, j),如果向下走一步,那么会从 (i−1,j) 走过来;如果向右走一步,那么会从 (i,j−1) 走过来。因此我们可以写出动态规划转移方程:
f(i,j)=f(i−1,j)+f(i,j−1)
需要注意的是,如果 i=0,那么 f(i−1,j) 并不是一个满足要求的状态,我们需要忽略这一项;同理,如果 j=0,那么 f(i,j−1) 并不是一个满足要求的状态,我们需要忽略这一项。
初始条件为 f(0,0)=1,即从左上角走到左上角有一种方法。
最终的答案即为 f(m−1,n−1)。
细节:
为了方便代码编写,我们可以将所有的 f(0,j) 以及 f(i,0) 都设置为边界条件,它们的值均为 1。
空间复杂度: O(mn)
class Solution {
public int uniquePaths(int m, int n) {
int[][] f = new int[m][n];
for (int i = 0; i < m; ++i) {
f[i][0] = 1;
}
for (int j = 0; j < n; ++j) {
f[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
}
复杂度分析
-
时间复杂度:O(mn)。
-
空间复杂度:O(mn),即为存储所有状态需要的空间。注意到 f(i,j) 仅与第 i 行和第 i−1 行的状态有关,因此我们可以使用滚动数组代替代码中的二维数组,使空间复杂度降低为 O(n)。此外,由于我们交换行列的值并不会对答案产生影响,因此我们总可以通过交换 m 和 n 使得 m≤n,这样空间复杂度降低至 O(min(m,n))。
空间复杂度: O(2n)
Java:
pre[]:始终代表上一行的 n 列数据
class Solution {
public int uniquePaths(int m, int n) {
int[] pre = new int[n];
int[] cur = new int[n];
Arrays.fill(pre, 1);
Arrays.fill(cur,1);
for (int i = 1; i < m;i++){
for (int j = 1; j < n; j++){
cur[j] = cur[j-1] + pre[j];
}
pre = cur.clone();
}
return pre[n-1];
}
}
Python:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
pre = [1] * n
cur = [1] * n
for i in range(1, m):
for j in range(1, n):
cur[j] = pre[j] + cur[j-1]
pre = cur[:] # 获取全部
return pre[-1]
类似于 dp[2][n]
,一样的优化效果!
空间复杂度: O(n)
优化:
Java:
class Solution {
public int uniquePaths(int m, int n) {
int[] cur = new int[n];
Arrays.fill(cur, 1);
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
cur[j] += cur[j-1];
}
}
return cur[n-1];
}
}
Python:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
cur = [1] * n
for i in range(1, m):
for j in range(1, n):
cur[j] += cur[j-1]
return cur[-1] # 返回最后一个数据
方法三:组合数学
class Solution {
public int uniquePaths(int m, int n) {
long ans = 1;
for (int x = n, y = 1; y < m; ++x, ++y) {
ans = ans * x / y;
}
return (int) ans;
}
}
Python:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
return comb(m + n - 2, n - 1)
复杂度分析
-
时间复杂度:O(m)。由于我们交换行列的值并不会对答案产生影响,因此我们总可以通过交换 m 和 n 使得 m≤n,这样空间复杂度降低至 O(min(m,n))。
-
空间复杂度:O(1)。
以上是关于LeetCode 62. 不同路径的主要内容,如果未能解决你的问题,请参考以下文章
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )