初识:神经网络

Posted ZSYL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了初识:神经网络相关的知识,希望对你有一定的参考价值。

学习目标

  1. 知道神经网络的概念
  2. 知道什么是神经元
  3. 知道什么是单层神经网络
  4. 知道什么是感知机
  5. 知道什么是多层神经网络
  6. 知道激活函数是什么,有什么作用
  7. 理解神经网络的思想

1. 人工神经网络的概念

人工神经网络(英语:Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型,用于对函数进行估计或近似。

和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如机器视觉和语音识别。这些问题都是很难被传统基于规则的编程所解决的。

2. 神经元的概念

在生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质。

1943 年,McCulloch 和 Pitts 将上述情形抽象为上图所示的简单模型,这就是一直沿用至今的 M-P 神经元模型。把许多这样的神经元按一定的层次结构连接起来,就得到了神经网络。

一个简单的神经元如下图所示,

其中:

  1. a 1 , a 2 … a n ​ a_1,a_2\\dots a_n​ a1,a2an 为各个输入的分量
  2. w 1 , w 2 ⋯ w n w_1,w_2 \\cdots w_n w1,w2wn 为各个输入分量对应的权重参数
  3. b b b 为偏置
  4. f f f激活函数,常见的激活函数有 tanhsigmoidrelu
  5. t t t 为神经元的输出

使用数学公式表示就是:
t = f ( W T A + b ) t = f(W^TA+b) t=f(WTA+b)
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果

3. 单层神经网络

单层神经网络是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。

示意图如下:

4. 感知机

感知机由两层神经网络组成,输入层接收外界输入信号后传递给输出层(输出+1正例,-1反例),输出层是 M-P 神经元

其中从 w 0 , w 1 ⋯ w n ​ w_0,w_1\\cdots w_n​ w0,w1wn都表示权重

感知机的作用:

把一个n维向量空间用一个超平面分割成两部分,给定一个输入向量,超平面可以判断出这个向量位于超平面的哪一边,得到输入时正类或者是反类,对应到2维空间就是一条直线把一个平面分为两个部分

5. 多层神经网络

多层神经网络就是由单层神经网络进行叠加之后得到的,所以就形成了的概念,常见的多层神经网络有如下结构:

  • 输入层(Input layer),众多神经元(Neuron)接受大量输入消息。输入的消息称为输入向量。
  • 输出层(Output layer),消息在神经元链接中传输、分析、权衡,形成输出结果。输出的消息称为输出向量。
  • 隐藏层(Hidden layer),简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。隐层可以有一层或多层。隐层的节点(神经元)数目不定,但数目越多神经网络的非线性越显著,从而神经网络的强健性(robustness)更显著。

示意图如下:

概念:全连接层

全连接层:当前一层和前一层每个神经元相互链接,我们称当前这一层为全连接层。

思考:假设第N-1层有m个神经元,第N层有n个神经元,当第N层是全连接层的时候,则N-1和N层之间有1,这些参数可以如何表示?

从上图可以看出,所谓的全连接层就是在前一层的输出的基础上进行一次 Y = W x + b ​ Y=Wx+b​ Y=Wx+b 的变化(不考虑激活函数的情况下就是一次线性变化,所谓线性变化就是平移(+b)和缩放的组合(*w))

6. 激活函数

在前面的神经元的介绍过程中我们提到了激活函数,那么他到底是干什么的呢?

假设我们有这样一组数据,三角形和四边形,需要把他们分为两类

通过不带激活函数的感知机模型我们可以划出一条线, 把平面分割开

假设我们确定了参数w和b之后,那么带入需要预测的数据,如果y>0,我们认为这个点在直线的右边,也就是正类(三角形),否则是在左边(四边形)

但是可以看出,三角形和四边形是没有办法通过直线分开的,那么这个时候该怎么办?

可以考虑使用多层神经网络来进行尝试,比如在前面的感知机模型中再增加一层

对上图中的等式进行合并,我们可以得到:
y = ( w 1 − 11 w 2 − 1 + ⋯   ) x 1 + ( w 1 − 21 w 2 − 1 + ⋯   ) x 2 + ( w 2 − 1 + ⋯   ) b 1 − 1 y = (w_{1-11}w_{2-1}+\\cdots)x_1+(w_{1-21}w_{2-1}+\\cdots)x_2 + (w_{2-1}+\\cdots)b_{1-1} y=(w111w21+)x1+(w121w21+)x2+(w21+)b11
上式括号中的都为w参数,和公式 y = w 1 x 1 + w 2 x 2 + b y = w_1x_1 + w_2x_2 +b y=w1x1+w2x2+b完全相同,依然只能够绘制出直线

所以可以发现,即使是多层神经网络,相比于前面的感知机,没有任何的改进。

但是如果此时,我们在前面感知机的基础上加上非线性的激活函数之后,输出的结果就不在是一条直线

如上图,右边是sigmoid函数,对感知机的结果,通过sigmoid函数进行处理

如果给定合适的参数w和b,就可以得到合适的曲线,能够完成对最开始问题的非线性分割

所以激活函数很重要的一个作用就是增加模型的非线性分割能力

常见的激活函数有:

看图可知:

  • sigmoid 只会输出正数,以及靠近0的输出变化率最大
  • tanh和sigmoid不同的是,tanh输出可以是负数
  • Relu是输入只能大于0,如果你输入含有负数,Relu就不适合,如果你的输入是图片格式,Relu就挺常用的,因为图片的像素值作为输入时取值为[0,255]。

激活函数的作用除了前面说的增加模型的非线性分割能力外,还有

  • 增加模型的非线性分割能力
  • 提高模型鲁棒性
  • 提高模型稳健性
  • 缓解梯度消失问题
  • 加速模型收敛等

这些好处,大家后续会慢慢体会到,这里先知道就行。

备注:

  • 线性:
    • 系统:函数,f,模型, f(x) = y
    • f(x1+x2) = y1+y2
    • f(kx1) = ky1

6. 神经网络示例

一个男孩想要找一个女朋友,于是实现了一个女友判定机,随着年龄的增长,他的判定机也一直在变化

14岁的时候:

无数次碰壁之后,男孩意识到追到女孩的可能性和颜值一样重要,于是修改了判定机:

在15岁的时候终于找到呢女朋友,但是一顿时间后他发现有各种难以忍受的习惯,最终决定分手。一段空窗期中,他发现找女朋友很复杂,需要更多的条件才能够帮助他找到女朋友,于是在25岁的时候,他再次修改了判定机:

在更新了女友判定机之后,问题又来了,很多指标不能够很好的量化,如何颜值,什么样的叫做颜值高,什么样的叫做性格好等等,为了解决这个问题,他又更新了判定机,最终得到超级女友判定机

上述的超级女友判定机其实就是神经网络,它能够接受基础的输入,通过隐藏层的线性的和非线性的变化最终的到输出

通过上面例子,希望大家能够理解深度学习思想

输出的最原始、最基本的数据,通过模型来进行特征工程,进行更加高级特征的学习,然后通过传入的数据来确定合适的参数,让模型去更好的拟合数据。

这个过程可以理解为盲人摸象,多个人一起摸,把摸到的结果乘上合适的权重,进行合适的变化,让他和目标值趋近一致。整个过程只需要输入基础的数据,程序自动寻找合适的参数。

加油!

感谢!

努力!

以上是关于初识:神经网络的主要内容,如果未能解决你的问题,请参考以下文章

初识神经网络算法

初识:神经网络(Neural Networks)

人工神经网络(初识)

神经网络的初识

初识神经网络_Python

python 神经网络 初识tensorflow