排序--06---快速排序
Posted 高高for 循环
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了排序--06---快速排序相关的知识,希望对你有一定的参考价值。
快速排序
定义:
- 快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
排序原理:
- 首先设定一个分界值,通过该分界值将数组分成左右两部分;
- 将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值;
- 然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
- 重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当 左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。
切分原理:
快速排序是也是一种分治思想的排序算法
把一个数组切分成两个子数组的基本思想:
- 找一个基准值,用两个指针分别指向数组的头部和尾部;
- 先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置;
- 再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置;
- 交换当前左边指针位置和右边指针位置的元素;
- 重复2,3,4步骤,直到左边指针的值大于右边指针的值停止。
代码实现 1
快速排序API设计:
代码
public class Quick {
/*
比较v元素是否小于w元素
*/
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
/*
数组元素i和j交换位置
*/
private static void exch(Comparable[] a, int i, int j) {
Comparable t = a[i];
a[i] = a[j];
a[j] = t;
}
//对数组内的元素进行排序
public static void sort(Comparable[] a) {
int lo = 0;
int hi = a.length-1;
sort(a,lo,hi);
}
//对数组a中从索引lo到索引hi之间的元素进行排序
private static void sort(Comparable[] a, int lo, int hi) {
//安全性校验
if (hi<=lo){
return;
}
//需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组);
int partition = partition(a, lo, hi);//返回的是分组的分界值所在的索引,分界值位置变换后的索引
//让左子组有序
sort(a,lo,partition-1);
//让右子组有序
sort(a,partition+1,hi);
}
//对数组a中,从索引 lo到索引 hi之间的元素进行分组,并返回分组界限对应的索引
public static int partition(Comparable[] a, int lo, int hi) {
//确定分界值
Comparable key = a[lo];
//定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置
int left=lo;
int right=hi+1;
//切分
while(true){
//先从右往左扫描,移动right指针,找到一个比分界值小或者相等的元素,停止
while(less(key,a[--right])){
if (right==lo){
break;
}
}
//再从左往右扫描,移动left指针,找到一个比分界值大或者相等的元素,停止
while(less(a[++left],key)){
if (left==hi){
break;
}
}
//判断 left>=right,如果是,则证明元素扫描完毕,结束循环,如果不是,则交换元素即可
if (left>=right){ // 一定要是left>=right,因为有可能出现left大于right的情况
break;
}else{
exch(a,left,right);
}
}
//交换分界值
exch(a,lo,right); //此时只能是和right交换值,因为有可能left此时已经大于right了.
return right;
}
}
测试:
public static void main(String[] args) {
Integer[] data = { 6, 1,6, 2, 7, 9, 3, 4, 5,6, 8 };
System.out.println("排序之前:\\n" + java.util.Arrays.toString(data));
Quick.sort(data);
System.out.println("排序之后:\\n" + java.util.Arrays.toString(data));
}
代码实现 2
/**
* 快速排序
* 通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,
* 则分别对这两部分继续进行排序,直到整个序列有序。
* @author shkstart
* 2018-12-17
*/
public class QuickSort {
private static void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
public static void quickSort(int[] data){
subSort(data,0,data.length-1);
}
private static void subSort(int[] data, int start, int end) {
if (start < end) {
int base = data[start];
int low = start;
int high = end + 1;
while (true) {
while (low < end && data[++low] - base <= 0)
;
while (high > start && data[--high] - base >= 0)
;
if (low < high) {
swap(data, low, high);
} else {
break;
}
}
swap(data, start, high);
subSort(data, start, high - 1);//递归调用
subSort(data, high + 1, end);
}
}
public static void main(String[] args) {
int[] data = { 9, -16, 30, 23, -30, -49, 25, 21, 30 };
System.out.println("排序之前:\\n" + java.util.Arrays.toString(data));
quickSort(data);
System.out.println("排序之后:\\n" + java.util.Arrays.toString(data));
}
}
对线排序:
import main.java.Algorithms.DataWrap;
public class QuickSort02 {
private static void swap(DataWrap[] data, int i, int j) {
DataWrap temp = data[i];
data[i] = data[j];
data[j] = temp;
}
private static void subSort(DataWrap[] data, int start, int end) {
if (start < end) {
DataWrap base = data[start];
int i = start;
int j = end + 1;
while (true) {
while (i < end && data[++i].compareTo(base) <= 0)
;
while (j > start && data[--j].compareTo(base) >= 0)
;
if (i < j) {
swap(data, i, j);
} else {
break;
}
}
swap(data, start, j);
subSort(data, start, j - 1);
subSort(data, j + 1, end);
}
}
public static void quickSort(DataWrap[] data){
subSort(data,0,data.length-1);
}
public static void main(String[] args) {
DataWrap[] data = { new DataWrap(9, ""), new DataWrap(-16, ""),
new DataWrap(21, "*"), new DataWrap(23, ""),
new DataWrap(-30, ""), new DataWrap(-49, ""),
new DataWrap(21, ""), new DataWrap(30, "*"),
new DataWrap(30, "") };
System.out.println("排序之前:\\n" + java.util.Arrays.toString(data));
quickSort(data);
System.out.println("排序之后:\\n" + java.util.Arrays.toString(data));
}
}
快速排序 是不稳定的
- 快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素,然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。
快速排序时间复杂度分析:
快速排序的一次切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n).
但整个快速排序的时间复杂度和切分的次数相关。
最优情况:
每一次切分选择的基准数字刚好将当前序列等分。
- 如果我们把数组的切分看做是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快速排序的时间复杂度为O(nlogn);
最坏情况:
- 每一次切分选择的基准数字是当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2);
最坏情况下,快速排序的时间复杂度为O(n^2);
平均情况:
- 每一次切分选择的基准数字不是最大值和最小值,也不是中值,这种情况我们也可以用数学归纳法证明,快速排序的时间复杂度为O(nlogn),
快速排序的平均时间复杂度为O(nlogn),
小结:
- 最佳情况:T(n) = O(nlogn)
- 最差情况:T(n) = O(n2)
- 平均情况:T(n) = O(nlogn) 不稳定
以上是关于排序--06---快速排序的主要内容,如果未能解决你的问题,请参考以下文章