LeNet模型对CIFAR-10数据集分类pytorch
Posted LA-AL
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeNet模型对CIFAR-10数据集分类pytorch相关的知识,希望对你有一定的参考价值。
LeNet模型对CIFAR-10数据集分类【pytorch】
目录
本文为针对CIFAR-10数据集的基于简单神经网络LeNet分类实现(pytorch实现)
LeNet 网络模型
Tip:(以上为原始LeNet)为了更好的效果,我在模型实现时此处将池化层换为Max
CIFAR-10 数据集
CIFAR-10数据集由60000张32x32的彩色图像组成,分为10类,每类有6000张图像。有50000张训练图像和10000张测试图像。
该数据集被分为五个训练批和一个测试批,每个批有10000张图像。测试批包含从每个类中随机选择的1000张图像。训练批包含其余的随机顺序的图像,但有些训练批可能包含一个类别的图像多于另一个。在它们之间,训练批次恰好包含了每个类别的5000张图像。
下面是数据集中的类别,以及每个类别的10张随机图像。
关于数据集更多详情请见:CIFAR-10数据集官方说明
Pytorch 实现代码
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torch.utils.data as data
import torchvision.transforms as transforms
class Lenet5(nn.Module):
def __init__(self,input_channels):
super().__init__()
#第1个卷积层
self.conv1 = nn.Conv2d(input_channels , 6 , kernel_size = 5 , padding = 2)
#第1个池化层
self.pooling1 = nn.MaxPool2d(kernel_size = 2, stride = 2)
#第2个卷积层
self.conv2= nn.Conv2d(6 , 16 , kernel_size=5)
#第2个池化层
self.pooling2 = nn.MaxPool2d(kernel_size = 2, stride=2)
##最后的三个FC
self.Flatten = nn.Flatten()
# 计算得出的当前的前面处理过后的shape,当然也可print出来以后再确定
self.Linear1 = nn.Linear(16*6*6,120)
self.Linear2 = nn.Linear(120,84)
self.Linear3 = nn.Linear(84,10)
def forward(self,X):
''' 前向推导 '''
X = self.pooling1(F.relu(self.conv1(X)))
X = self.pooling2(F.relu(self.conv2(X)))
X = X.view(X.size()[0],-1)
X = F.relu(self.Linear1(X))
X = F.relu(self.Linear2(X))
X = F.relu(self.Linear3(X))
return X
def load_CIFAR10(batch_size, resize=None):
""" 加载数据集到内存 """
trans = [transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.CIFAR10(root="dataset",
train=True,
transform=trans,
download=True)
mnist_test = torchvision.datasets.CIFAR10(root="dataset",
train=False,
transform=trans,
download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=2),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=2))
def get_labels(labels):
''' 标签转换 '''
text_labels = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
return [text_labels[int(i)] for i in labels]
def train(loss,updater,train_iter,net,epoches):
''' 训练模型 '''
for epoch in range(epoches):
run_loss = 0
for step,(X,y) in enumerate(train_iter):
if torch.cuda.is_available():
X = X.cuda()
y = y.cuda()
y_hat = net.forward(X) #前向推导
ls = loss(y_hat,y).sum() #计算误差
updater.zero_grad() #梯度清零
ls.backward() #计算新的梯度
run_loss += ls.item()
updater.step() #更新权值
print( f'true:{y} preds:{y_hat.argmax(axis=1)} epoch:{epoch:02d}\\t epoch_loss {run_loss/5000}\\t ')
print('finished training\\n')
def predict(net,test_iter,n=6):
''' 测试集预测 '''
for X, y in test_iter:
if torch.cuda.is_available():
X = X.cuda()
y = y.cuda()
trues = get_labels(y)
preds = get_labels(net(X).argmax(axis=1))
titles = ['groundTruth :'+true + ' ' +'preds: '+ pred for true, pred in zip(trues, preds)]
print(titles[0:n])
if __name__ == '__main__':
#设置超参数
batch_size, learning_rate, epoches = 10, 0.05, 1
#加载数据
trainSet,testSet = load_CIFAR10(batch_size)
#加载模型
net = Lenet5(3)
if torch.cuda.is_available():
net.cuda()
# 选择损失函数
loss = nn.CrossEntropyLoss()
# 优化器
updater = torch.optim.SGD(net.parameters(), lr=learning_rate)
#训练
train(loss,updater,trainSet,net,batch_size,epoches,learning_rate)
#测试集预测
predict(net,testSet)
以上是关于LeNet模型对CIFAR-10数据集分类pytorch的主要内容,如果未能解决你的问题,请参考以下文章
我用 PyTorch 复现了 LeNet-5 神经网络(CIFAR10 数据集篇)!