Python 的整数与 Numpy 的数据溢出
Posted 机器学习算法与Python学习-公众号
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 的整数与 Numpy 的数据溢出相关的知识,希望对你有一定的参考价值。
点击 机器学习算法与Python学习 ,选择加星标
精彩内容不迷路
某位 A 同学发了我一张截图,问为何结果中出现了负数?
看了图,我第一感觉就是数据溢出了。数据超出能表示的最大值,就会出现奇奇怪怪的结果。
然后,他继续发了张图,内容是 print(100000*208378),就是直接打印上图的 E[0]*G[0],结果是 20837800000,这是个正确的结果。
所以新的问题是:如果说上图的数据溢出了,为何直接相乘的数却没有溢出?
由于我一直忽视数据的表示规则(整型的上限是多少?),而且对 Numpy 了解不多,还错看了图中结果,误以为每一个数据都是错误的,所以就解答不出来。
最后,经过学习群里的一番讨论,我才终于明白是怎么回事,所以本文把相关知识点做个梳理。
在开始之前,先总结一下上图会引出的话题:
Python 3 中整数的上限是多少?Python 2 呢?
Numpy 中整数的上限是多少?整数溢出该怎么办?
对于第一个问题,两个版本的 Python 有所区别。先看看 Python 2,它有两种整数:
一种是短整数,也即常说的整数,用 int 表示,有个内置函数 int()。其大小有限,可通过
sys.maxint()
查看(取决于平台是 32 位还是 64 位)一种是长整数,即大小无限的整数,用 long 表示,有个内置函数 long()。写法上是在数字后面加大写字母 L 或小写的 l,如 1000L
当一个整数超出短整数范围时,它会自动采用长整数表示。举例,打印 2**100
,结果会在末尾加字母 L 表示它是长整数。
但是到了 Python 3,情况就不同了:它仅有一种内置的整数,表示为 int,形式上是 Python 2 的短整数,但实际上它能表示的范围无限,行为上更像是长整数。无论多大的数,结尾都不需要字母 L 来作区分。
也就是说,Python 3 整合了两种整数表示法,用户不再需要自行区分,全交给底层按需处理。
理论上,Python 3 中的整数没有上限(只要不超出内存空间)。这就解释了前文中直接打印两数相乘,为什么结果会正确了。
PEP-237(Unifying Long Integers and Integers)中对这个转变作了说明。它解释这样做的目的:
这会给新的 Python 程序员(无论他们是否是编程新手)减少一项上手前要学的功课。
Python 在语言运用层屏蔽了很多琐碎的活,比如内存分配,所以,我们在使用字符串、列表或字典等对象时,根本不用操心。整数类型的转变,也是出于这样的便利目的。(坏处是牺牲了一些效率,在此就不谈了)
回到前面的第二个话题:Numpy 中整数的上限是多少?
由于它是 C 语言实现,在整数表示上,用的是 C 语言的规则,也就是会区分整数和长整数。
有一种方式可查看:
import numpy as np
a = np.arange(2)
type(a[0])
# 结果:numpy.int32
也就是说它默认的整数 int 是 32 位,表示范围在 -2147483648 ~ 2147483647。
对照前文的截图,里面只有两组数字相乘时没有溢出:100007*4549、100012*13264,其它数据组都溢出了,所以出现奇怪的负数结果。
Numpy 支持的数据类型要比 Python 的多,相互间的区分界限很多样:
截图来源:https://www.runoob.com/numpy/numpy-dtype.html
要解决整数溢出,可通过指定 dtype 的方式:
import numpy as np
q = [100000]
w = [500000]
# 一个溢出的例子:
a = np.array(q)
b = np.array(w)
print(a*b) # 产生溢出,结果是个奇怪的数值
# 一个解决的例子:
c = np.array(q, dtype= int64 )
d = np.array(w, dtype= int64 )
print(c*d) # 没有溢出:[50000000000]
好了,前面提出的问题就回答完了。
来作个结尾吧:
Python 3 极大地简化了整数的表示,效果可表述为:整数就只有一种整数(int),没有其它类型的整数(long、int8、int64 之类的)
Numpy 中的整数类型对应于 C 语言的数据类型,每种“整数”有自己的区间,要解决数据溢出问题,需要指定更大的数据类型(dtype)
如果对你有帮助。
请不吝点赞,点在看,谢谢
以上是关于Python 的整数与 Numpy 的数据溢出的主要内容,如果未能解决你的问题,请参考以下文章