⭐算法入门⭐《递推》简单03 —— LeetCode 1137. 第 N 个泰波那契数

Posted 英雄哪里出来

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了⭐算法入门⭐《递推》简单03 —— LeetCode 1137. 第 N 个泰波那契数相关的知识,希望对你有一定的参考价值。

🙉饭不食,水不饮,题必须刷🙉

还不会C语言,和我一起打卡!
🌞《光天化日学C语言》🌞

LeetCode 太难?上简单题!
🧡《C语言入门100例》🧡

LeetCode 太简单?大神盘他!
🌌《夜深人静写算法》🌌

一、题目

1、题目描述

  泰波那契序列 T n T_n Tn 定义如下: T 0 = 0 T_0 = 0 T0=0, T 1 = 1 T_1 = 1 T1=1, T 2 = 1 T_2 = 1 T2=1, 且当 n ≥ 3 n \\ge 3 n3 时满足 T n = T n + T n − 1 + T n − 2 T_n = T_n + T_{n-1} + T_{n-2} Tn=Tn+Tn1+Tn2,给定整数 n n n,求第 n n n 个泰波那契数 T n T_n Tn 的值。
  样例输入:25
  样例输出:1389537

2、基础框架

  • c++ 版本给出的基础框架代码如下:
class Solution {
public:
    int tribonacci(int n) {
    }
};

3、原题链接

LeetCode 1137. 第 N 个泰波那契数

二、解题报告

1、思路分析

  • 直接一层循环枚举,递推计算即可。

2、时间复杂度

  • 时间复杂度为一个for循环的次数,即 O ( n ) O(n) O(n)

3、代码详解

class Solution {
    int f[100];                                 // (1)
public:
    int tribonacci(int n) {
        f[0] = 0;                               // (2)
        f[1] = 1;
        f[2] = 1;
        for(int i = 3; i <= n; ++i) {           // (3)
            f[i] = f[i-1] + f[i-2] + f[i-3];
        }
        return f[n];                            // (4)
    }
};
  • ( 1 ) (1) (1) 用一个数组来缓存结果;
  • ( 2 ) (2) (2) 初始化 n = 0 , 1 , 2 n=0,1,2 n=0,1,2 的情况;
  • ( 3 ) (3) (3) 递推求解;
  • ( 4 ) (4) (4) 返回最后的结果;

三、本题小知识

数学上的递推问题,在程序中不需要计算出通项公式,可以直接通过一个循环来搞定!


以上是关于⭐算法入门⭐《递推》简单03 —— LeetCode 1137. 第 N 个泰波那契数的主要内容,如果未能解决你的问题,请参考以下文章

⭐算法入门⭐《递推》简单02 —— LeetCode 509. 斐波那契数

⭐算法入门⭐《递推 - 二维》简单01 —— LeetCode 118. 杨辉三角

⭐算法入门⭐《递推 - 一维》简单04 —— LeetCode 338. 比特位计数

⭐算法入门⭐《递推 - 二维》简单01 —— LeetCode 118. 杨辉三角

算法之动态规划(递推求解一)

动态规划初步