P3768简单的数学题(莫比乌斯,欧拉函数,杜教筛)
Posted H-w-H
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P3768简单的数学题(莫比乌斯,欧拉函数,杜教筛)相关的知识,希望对你有一定的参考价值。
P3768简单的数学题
解法一:
推式子部分
∑
i
=
1
n
∑
j
=
1
n
i
j
g
c
d
(
i
,
j
)
∑
i
=
1
n
i
∑
j
=
1
n
j
∑
d
∣
i
,
d
∣
j
d
[
g
c
d
(
i
,
j
)
=
d
]
∑
d
=
1
n
d
3
s
u
m
i
=
1
n
d
i
∑
j
=
1
n
d
j
[
g
c
d
(
i
,
j
)
=
1
]
∑
d
=
1
n
d
3
∑
i
=
1
n
d
i
∑
j
=
1
n
d
j
∑
x
∣
g
c
d
(
i
,
j
)
μ
(
x
)
∑
d
=
1
n
d
3
∑
x
=
1
n
d
x
2
μ
(
x
)
∑
i
=
1
n
d
x
i
∑
j
=
1
n
d
x
j
∑
d
=
1
n
d
3
∑
x
=
1
n
d
x
2
μ
(
x
)
(
⌊
n
d
x
⌋
(
1
+
⌊
n
d
x
⌋
)
2
)
2
令
t
=
d
x
∑
t
=
1
n
t
2
∑
d
∣
t
μ
(
t
d
)
d
∗
S
u
m
2
(
n
t
)
∑
t
=
1
n
t
2
ϕ
(
t
)
∗
S
u
m
2
(
n
t
)
\\begin{aligned} &\\sum_{i=1}^n\\sum_{j=1}^nijgcd(i,j)\\\\ &\\sum_{i=1}^ni\\sum_{j=1}^nj\\sum_{d|i,d|j}d[gcd(i,j)=d]\\\\ &\\sum_{d=1}^nd^3sum_{i=1}^{\\frac nd}i\\sum_{j=1}^{\\frac nd}j[gcd(i,j)=1]\\\\ &\\sum_{d=1}^nd^3\\sum_{i=1}^{\\frac nd}i\\sum_{j=1}^{\\frac nd}j\\sum_{x|gcd(i,j)}\\mu(x)\\\\ &\\sum_{d=1}^nd^3\\sum_{x=1}^{\\frac nd}x^2\\mu(x)\\sum_{i=1}^{\\frac{n}{dx}}i\\sum_{j=1}^{\\frac{n}{dx}}j\\\\ &\\sum_{d=1}^nd^3\\sum_{x=1}^{\\frac nd}x^2\\mu(x)\\left( \\frac{\\lfloor \\frac{n}{dx}\\rfloor(1+\\lfloor \\frac{n}{dx}\\rfloor)}{2}\\right)^2\\\\ &令t=dx\\\\ &\\sum_{t=1}^nt^2\\sum_{d|t}\\mu(\\frac td)d*Sum^2(\\frac nt)\\\\ &\\sum_{t=1}^nt^2\\phi(t)*Sum^2(\\frac nt)\\\\ &\\end{aligned}
i=1∑nj=1∑nijgcd(i,j)i=1∑nij=1∑njd∣i,d∣j∑d[gcd(i,j)=d]d=1∑nd3sumi=1dnij=1∑dnj[gcd(i,j)=1]d=1∑nd3i=1∑dnij=1∑dnjx∣gcd(i,j)∑μ(x)d=1∑nd3x=1∑dnx2μ(x)i=1∑dxnij=1∑dxnjd=1∑nd3x=1∑dnx2μ(x)(2⌊dxn⌋(1+⌊dxn⌋))2令t=dxt=1∑nt2d∣t∑μ(dt)d∗Sum2(tn)t=1∑nt2ϕ(t)∗Sum2(tn 以上是关于P3768简单的数学题(莫比乌斯,欧拉函数,杜教筛)的主要内容,如果未能解决你的问题,请参考以下文章 数论入门——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛 51nod-1239&1244欧拉函数之和&莫比乌斯函数之和 杜教筛 bzoj 4916: 神犇和蒟蒻欧拉函数+莫比乌斯函数+杜教筛