Tensorflow2图像分割代码

Posted 空中旋转篮球

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow2图像分割代码相关的知识,希望对你有一定的参考价值。

import tensorflow as tf

from tensorflow_examples.models.pix2pix import pix2pix

import tensorflow_datasets as tfds
tfds.disable_progress_bar()

import matplotlib.pyplot as plt
from IPython.display import clear_output
from IPython import display

dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)


def normalize(input_image, input_mask):
  input_image = tf.cast(input_image, tf.float32) / 255.0
  input_mask -= 1
  return input_image, input_mask

@tf.function
def load_image_train(datapoint):
  input_image = tf.image.resize(datapoint['image'], (128, 128))
  input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

  if tf.random.uniform(()) > 0.5:
    input_image = tf.image.flip_left_right(input_image)
    input_mask = tf.image.flip_left_right(input_mask)

  input_image, input_mask = normalize(input_image, input_mask)

  return input_image, input_mask

def load_image_test(datapoint):
  input_image = tf.image.resize(datapoint['image'], (128, 128))
  input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))

  input_image, input_mask = normalize(input_image, input_mask)

  return input_image, input_mask

TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 64
BUFFER_SIZE = 1000
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE

train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test = dataset['test'].map(load_image_test)

train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_dataset = test.batch(BATCH_SIZE)

def display(display_list):
    plt.figure(figsize=(15, 15))

    title = ['Input Image', 'True Mask', 'Predicted Mask']

    for i in range(len(display_list)):
        plt.subplot(1, len(display_list), i + 1)
        plt.title(title[i])
        plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i]))
        plt.axis('off')
    plt.show()


for image, mask in train.take(1):
      sample_image, sample_mask = image, mask
display([sample_image, sample_mask])

#定义模型
OUTPUT_CHANNELS = 3

base_model = tf.keras.applications.MobileNetV2(input_shape=[128, 128, 3], include_top=False)

# 使用这些层的激活设置
layer_names = [
    'block_1_expand_relu',   # 64x64
    'block_3_expand_relu',   # 32x32
    'block_6_expand_relu',   # 16x16
    'block_13_expand_relu',  # 8x8
    'block_16_project',      # 4x4
]
layers = [base_model.get_layer(name).output for name in layer_names]

# 创建特征提取模型
down_stack = tf.keras.Model(inputs=base_model.input, outputs=layers)

down_stack.trainable = False

up_stack = [
    pix2pix.upsample(512, 3),  # 4x4 -> 8x8
    pix2pix.upsample(256, 3),  # 8x8 -> 16x16
    pix2pix.upsample(128, 3),  # 16x16 -> 32x32
    pix2pix.upsample(64, 3),   # 32x32 -> 64x64
]

def unet_model(output_channels):
  inputs = tf.keras.layers.Input(shape=[128, 128, 3])
  x = inputs

  # 在模型中降频取样
  skips = down_stack(x)
  x = skips[-1]
  skips = reversed(skips[:-1])

  # 升频取样然后建立跳跃连接
  for up, skip in zip(up_stack, skips):
    x = up(x)
    concat = tf.keras.layers.Concatenate()
    x = concat([x, skip])

  # 这是模型的最后一层
  last = tf.keras.layers.Conv2DTranspose(
      output_channels, 3, strides=2,
      padding='same')  #64x64 -> 128x128

  x = last(x)

  return tf.keras.Model(inputs=inputs, outputs=x)

#训练模型
model = unet_model(OUTPUT_CHANNELS)
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

tf.keras.utils.plot_model(model, show_shapes=True)

def create_mask(pred_mask):
  pred_mask = tf.argmax(pred_mask, axis=-1)
  pred_mask = pred_mask[..., tf.newaxis]
  return pred_mask[0]

def show_predictions(dataset=None, num=1):
  if dataset:
    for image, mask in dataset.take(num):
      pred_mask = model.predict(image)
      display([image[0], mask[0], create_mask(pred_mask)])
  else:
    display([sample_image, sample_mask,
             create_mask(model.predict(sample_image[tf.newaxis, ...]))])

show_predictions()

class DisplayCallback(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs=None):
    clear_output(wait=True)
    show_predictions()
    print ('\\nSample Prediction after epoch {}\\n'.format(epoch+1))

EPOCHS = 20
VAL_SUBSPLITS = 5
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS

model_history = model.fit(train_dataset, epochs=EPOCHS,
                          steps_per_epoch=STEPS_PER_EPOCH,
                          validation_steps=VALIDATION_STEPS,
                          validation_data=test_dataset,
                          callbacks=[DisplayCallback()])

loss = model_history.history['loss']
val_loss = model_history.history['val_loss']

epochs = range(EPOCHS)

plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'bo', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.ylim([0, 1])
plt.legend()
plt.show()

show_predictions(test_dataset, 3)

以上是关于Tensorflow2图像分割代码的主要内容,如果未能解决你的问题,请参考以下文章

如何标记从卷积神经网络的分割算法生成的图像片段?

TensorFlow2深度学习实战(十七):目标检测算法 Faster R-CNN 实战

TensorFlow2深度学习实战(十七):目标检测算法 Faster R-CNN 实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战

TensorFlow2深度学习实战(十八):目标检测算法YOLOv4-Tiny实战