Tensorflow2数据增强(data_augmentation)代码

Posted 空中旋转篮球

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow2数据增强(data_augmentation)代码相关的知识,希望对你有一定的参考价值。

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

from tensorflow.keras import layers

(train_ds, val_ds, test_ds), metadata = tfds.load(
    'tf_flowers',
    split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],
    with_info=True,
    as_supervised=True,
)

num_classes = metadata.features['label'].num_classes
print(num_classes)

get_label_name = metadata.features['label'].int2str

image, label = next(iter(train_ds))
plt.imshow(image)
plt.title(get_label_name(label))
plt.show()

IMG_SIZE = 180

resize_and_rescale = tf.keras.Sequential([
  layers.experimental.preprocessing.Resizing(IMG_SIZE, IMG_SIZE),
  layers.experimental.preprocessing.Rescaling(1./255)
])
result = resize_and_rescale(image)
plt.imshow(result)
print("Min and max pixel values:", result.numpy().min(), result.numpy().max())

data_augmentation = tf.keras.Sequential([
  layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
  layers.experimental.preprocessing.RandomRotation(0.2),
])
# Add the image to a batch
image = tf.expand_dims(image, 0)

plt.figure(figsize=(10, 10))
for i in range(9):
  augmented_image = data_augmentation(image)
  ax = plt.subplot(3, 3, i + 1)
  plt.imshow(augmented_image[0])
  plt.axis("off")
plt.show()

model = tf.keras.Sequential([
  resize_and_rescale,
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  # Rest of your model
])

aug_ds = train_ds.map(
  lambda x, y: (resize_and_rescale(x, training=True), y))

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds, shuffle=False, augment=False):
  # Resize and rescale all datasets
  ds = ds.map(lambda x, y: (resize_and_rescale(x), y),
              num_parallel_calls=AUTOTUNE)

  if shuffle:
    ds = ds.shuffle(1000)

  # Batch all datasets
  ds = ds.batch(batch_size)

  # Use data augmentation only on the training set
  if augment:
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y),
                num_parallel_calls=AUTOTUNE)

  # Use buffered prefecting on all datasets
  return ds.prefetch(buffer_size=AUTOTUNE)

train_ds = prepare(train_ds, shuffle=True, augment=True)
val_ds = prepare(val_ds)
test_ds = prepare(test_ds)

model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

epochs=5
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

def random_invert_img(x, p=0.5):
  if  tf.random.uniform([]) < p:
    x = (255-x)
  else:
    x
  return x

def random_invert(factor=0.5):
  return layers.Lambda(lambda x: random_invert_img(x, factor))

random_invert = random_invert()

plt.figure(figsize=(10, 10))
for i in range(9):
  augmented_image = random_invert(image)
  ax = plt.subplot(3, 3, i + 1)
  plt.imshow(augmented_image[0].numpy().astype("uint8"))
  plt.axis("off")
plt.show()

class RandomInvert(layers.Layer):
  def __init__(self, factor=0.5, **kwargs):
    super().__init__(**kwargs)
    self.factor = factor

  def call(self, x):
    return random_invert_img(x)

plt.imshow(RandomInvert()(image)[0])
plt.show()

以上是关于Tensorflow2数据增强(data_augmentation)代码的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow2 入门指南 | 07 数据集的加载预处理数据增强

TensorFlow2.x —— mageDataGenerator

Tensorflow2 图像分类-Flowers数据及分类代码详解

MobileNet实战:tensorflow2.X版本,MobileNetV3图像分类任务(小数据集)

MobileNet实战:tensorflow2.X版本,MobileNetV3图像分类任务(小数据集)

使用数据增强层在 Tensorflow 2.7.0 上保存模型